RESUMO
RNA-protein interactions are key to many aspects of cellular homeostasis and their identification is important to understanding cellular function. Multiple strategies have been developed for the RNA-centric characterization of RNA-protein complexes. However, these studies have all been done in immortalized cell lines that do not capture the complexity of heterogeneous tissue samples. Here, we develop hybridization purification of RNA-protein complexes followed by mass spectrometry (HyPR-MS) for use in tissue samples. We isolated both polyadenylated RNA and the specific long noncoding RNA MALAT1 and characterized their protein interactomes. These results demonstrate the feasibility of HyPR-MS in tissue for the multiplexed characterization of specific RNA-protein complexes.
Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Linhagem Celular , RNA MensageiroRESUMO
A recent outbreak of the mpox virus (MPXV) occurred in non-endemic regions of the world beginning in May 2022. Pathogen surveillance systems faced pressure to quickly establish response protocols, offering an opportunity to employ wastewater-based epidemiology (WBE) for population-level monitoring. The pilot study reported herein aimed to: (i) develop a reliable protocol for MPXV DNA detection in wastewater which would reduce false negative reporting, (ii) test this protocol on wastewater from various regions across the United States, and (iii) conduct a state of the science review of the current literature reporting on experimental methods for MPXV detection using WBE. Twenty-four-hour composite samples of untreated municipal wastewater were collected from the states of New Jersey, Georgia, Illinois, Texas, Arizona, and Washington beginning July 3rd, 2022 through October 16th, 2022 (n = 60). Samples underwent vacuum filtration, DNA extraction from captured solids, MPXV DNA pre-amplification, and qPCR analysis. Of the 60 samples analyzed, a total of eight (13%) tested positive for MPXV in the states of Washington, Texas, New Jersey, and Illinois. The presence of clade IIb MPXV DNA in these samples was confirmed via Sanger sequencing and integration of pre-amplification prior to qPCR decreased the rate of false negative detections by 87% as compared to qPCR analysis alone. Wastewater-derived detections of MPXV were compared to clinical datasets, with 50% of detections occurring as clinical cases were increasing/peaking and 50% occurring as clinical cases waned. Results from the literature review (n = 9 studies) revealed successful strategies for the detection of MPXV DNA in wastewater, however also emphasized a need for further method optimization and standardization. Overall, this work highlights the use of pre-amplification prior to qPCR detection as a means to capture the presence of MPXV DNA in community wastewater and offers guidance for monitoring low-titer pathogens via WBE.
RESUMO
RNA-protein interactions are integral to maintaining proper cellular function and homeostasis, and the disruption of key RNA-protein interactions is central to many disease states. HyPR-MS (hybridization purification of RNA-protein complexes followed by mass spectrometry) is a highly versatile and efficient technology which enables multiplexed discovery of specific RNA-protein interactomes. This chapter provides extensive guidance for successful application of HyPR-MS to the system and target RNA(s) of interest, as well as a detailed description of the fundamental HyPR-MS procedure, including: (1) experimental design of controls, capture oligonucleotides, and qPCR assays; (2) formaldehyde cross-linking of cell culture; (3) cell lysis and RNA solubilization; (4) isolation of target RNA(s); (5) RNA purification and RT-qPCR analysis; (6) protein preparation and mass spectrometric analysis; and (7) mass spectrometric data analysis.