Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(7): 975-988, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37414850

RESUMO

Metabolic demands fluctuate rhythmically and rely on coordination between the circadian clock and nutrient-sensing signalling pathways, yet mechanisms of their interaction remain not fully understood. Surprisingly, we find that class 3 phosphatidylinositol-3-kinase (PI3K), known best for its essential role as a lipid kinase in endocytosis and lysosomal degradation by autophagy, has an overlooked nuclear function in gene transcription as a coactivator of the heterodimeric transcription factor and circadian driver Bmal1-Clock. Canonical pro-catabolic functions of class 3 PI3K in trafficking rely on the indispensable complex between the lipid kinase Vps34 and regulatory subunit Vps15. We demonstrate that although both subunits of class 3 PI3K interact with RNA polymerase II and co-localize with active transcription sites, exclusive loss of Vps15 in cells blunts the transcriptional activity of Bmal1-Clock. Thus, we establish non-redundancy between nuclear Vps34 and Vps15, reflected by the persistent nuclear pool of Vps15 in Vps34-depleted cells and the ability of Vps15 to coactivate Bmal1-Clock independently of its complex with Vps34. In physiology we find that Vps15 is required for metabolic rhythmicity in liver and, unexpectedly, it promotes pro-anabolic de novo purine nucleotide synthesis. We show that Vps15 activates the transcription of Ppat, a key enzyme for the production of inosine monophosphate, a central metabolic intermediate for purine synthesis. Finally, we demonstrate that in fasting, which represses clock transcriptional activity, Vps15 levels are decreased on the promoters of Bmal1 targets, Nr1d1 and Ppat. Our findings open avenues for establishing the complexity for nuclear class 3 PI3K signalling for temporal regulation of energy homeostasis.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína VPS15 de Distribuição Vacuolar/genética , Proteína VPS15 de Distribuição Vacuolar/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Purinas , Lipídeos
2.
Invest Ophthalmol Vis Sci ; 61(10): 47, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32852543

RESUMO

Purpose: Maintaining levels of nicotinamide adenine dinucleotide (NAD+), a coenzyme critical for cellular energetics and biosynthetic pathways, may be therapeutic in retinal disease because retinal NAD+ levels decline during retinal damage and degeneration. The purpose of this study was to investigate whether systemic treatment with nicotinamide riboside (NR), a NAD+ precursor that is orally deliverable and well-tolerated by humans, is protective in a mouse model of light-induced retinal degeneration. Methods: Mice were injected intraperitoneally with vehicle or NR the day before and the morning of exposure to degeneration-inducing levels of light. Retinal function was assessed by electroretinography and in vivo retinal morphology and inflammation was assessed by optical coherence tomography. Post mortem retina sections were assessed for morphology, TUNEL, and inflammatory markers Iba1 and GFAP. Retinal NAD+ levels were enzymatically assayed. Results: Exposure to degeneration-inducing levels of light suppressed retinal NAD+ levels. Mice undergoing light-induced retinal degeneration exhibited significantly suppressed retinal function, severely disrupted photoreceptor cell layers, and increased apoptosis and inflammation in the outer retina. Treatment with NR increased levels of NAD+ in retina and prevented these deleterious outcomes. Conclusions: This study is the first to report the protective effects of NR treatment in a mouse model of retinal degeneration. The positive outcomes, coupled with human tolerance to NR dosing, suggest that maintaining retinal NAD+ via systemic NR treatment should be further explored for clinical relevance.


Assuntos
Niacinamida/análogos & derivados , Degeneração Retiniana/prevenção & controle , Animais , Modelos Animais de Doenças , Eletrorretinografia , Imunofluorescência , Injeções Intraperitoneais , Luz/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NAD/metabolismo , Niacinamida/administração & dosagem , Niacinamida/uso terapêutico , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Compostos de Piridínio , Retina/diagnóstico por imagem , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/efeitos da radiação , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/etiologia , Tomografia de Coerência Óptica
3.
Invest Ophthalmol Vis Sci ; 59(1): 45-53, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29305606

RESUMO

Purpose: To investigate whether treatment with xanthohumol (XN), the principal prenylated chalconoid from Humulus lupulus (hops), is protective in a mouse model of light-induced retinal degeneration (LIRD). Methods: Mice (129S2/SvPasCrl) were intraperitoneally injected with vehicle or XN prior to toxic light exposure and every 3 days thereafter. Retinal function was assessed by electroretinograms at 1, 2, and 4 weeks following toxic light exposure. Visual acuity was tested by optokinetic tracking 1 week and 4 weeks after toxic light exposure. Retina sections were stained with hematoxylin and eosin for morphologic analysis or by TUNEL. Redox potentials were assessed in retinal tissue by measuring levels of cysteine (CYS), cystine (CYSS), glutathione (GSH), and glutathione disulfide (GSSG) using HPLC with fluorescence detection. Results: Toxic light significantly suppressed retinal function and visual acuity, severely disrupted the photoreceptor cell layer, and significantly decreased the number of nuclei and increased the accumulation of TUNEL-labeled cells in the outer nuclear layer. These effects were prevented by XN treatment. Treatment with XN also maintained GSSG and CYSS redox potentials and the total CYS pool in retinas of mice undergoing toxic light exposure. Conclusions: XN treatment partially preserved visual acuity and retinal function in the LIRD mouse. Preservation of retinal CYS and of GSSG and CYSS redox potentials may indicate that XN treatment induces an increased antioxidant response, but further experiments are needed to verify this potential mechanism. To our knowledge, this is the first study to report protective effects of XN in a model of retinal degeneration.


Assuntos
Flavonoides/administração & dosagem , Estresse Oxidativo , Propiofenonas/administração & dosagem , Retina/patologia , Degeneração Retiniana/prevenção & controle , Animais , Modelos Animais de Doenças , Eletrorretinografia , Injeções Intraperitoneais , Masculino , Camundongos , Retina/efeitos dos fármacos , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA