Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 26(11): 14636-14649, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29877498

RESUMO

We consider a modified version of the spin-flip model (SFM) that describes optically pumped quantum dot (QD) spin-polarized vertical-cavity surface-emitting lasers (VCSELs). Maps showing different dynamical regions and those consisting of various key bifurcations are constructed by direct numerical simulations and a numerical path continuation technique, respectively. A comparison between them clarifies the physical mechanism that governs the underlying dynamics as well as routes to chaos in QD spin-VCSELs. Detailed numerical simulations illustrate the role played by the capture rate from wetting layer (WL) to QD ground state, the gain parameter, and the amplitude-phase coupling. By tuning the aforementioned key parameters in turn we show how the dynamical regions evolve as a function of the intensity and polarization of the optical pump, as well as in the plane of the spin relaxation rate and linear birefringence rate, which is of importance in the design of spin lasers promising potential applications. By increasing the capture rate from WL to QD our simulation accurately describes the transition from the QD spin-VCSEL to the quantum well case, in agreement with a previous mathematical derivation, and thus validates the modified SFM equations.

2.
Opt Express ; 26(4): 4751-4765, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29475321

RESUMO

We study the nonlinear dynamics of solitary and optically injected two-element laser arrays with a range of waveguide structures. The analysis is performed with a detailed direct numerical simulation, where high-resolution dynamic maps are generated to identify regions of dynamic instability in the parameter space of interest. Our combined one- and two-parameter bifurcation analysis uncovers globally diverse dynamical regimes (steady-state, oscillation, and chaos) in the solitary laser arrays, which are greatly influenced by static design waveguiding structures, the amplitude-phase coupling factor of the electric field, i.e. the linewidth-enhancement factor, as well as the control parameter, e.g. the pump rate. When external optical injection is introduced to one element of the arrays, we show that the whole system can be either injection-locked simultaneously or display rich, different dynamics outside the locking region. The effect of optical injection is to significantly modify the nature and the regions of nonlinear dynamics from those found in the solitary case. We also show similarities and differences (asymmetry) between the oscillation amplitude of the two elements of the array in specific well-defined regions, which hold for all the waveguiding structures considered. Our findings pave the way to a better understanding of dynamic instability in large arrays of lasers.

3.
Opt Lett ; 42(17): 3494-3497, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957071

RESUMO

We report on a master and slave configuration consisting of two optically pumped spin-vertical-cavity surface-emitting lasers for chaos synchronization and secure communication. Under appropriate conditions, high-quality chaos synchronization is achieved. We propose two encryption schemes, where either the pump magnitude or polarization is modulated. The results show that these allow for Gb/s transmission of secure data, but exhibit different features: one indicates that the message can be recovered by the total intensity, but not the polarization components, whereas the other shows that the message can be better or exclusively retrieved from the polarization components at high bit rates.

4.
Opt Lett ; 42(8): 1628-1631, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28409815

RESUMO

Sustained, large amplitude and tunable birefringence-induced oscillations are obtained in a spin-vertical cavity surface-emitting laser (spin-VCSEL). Experimental evidence is provided using a spin-VCSEL operating at 1300 nm, under continuous-wave optical pumping and at room temperature. Numerical and stability analyses are performed to interpret the experiments and to identify the combined effects of pump ellipticity, spin relaxation rate, and cavity birefringence. Importantly, the frequency of the induced oscillations is determined by the device's birefringence rate, which can be tuned to very large values. This opens the path for ultrafast spin-lasers operating at record frequencies exceeding those possible in traditional semiconductor lasers and with ample expected impact in disparate disciplines (e.g., datacomms, spectroscopy).

5.
Opt Express ; 20(9): 10256-70, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22535116

RESUMO

Automated protocols have been developed to characterize time series data in terms of stability. These techniques are applied to the output power time series of an optically injected vertical cavity surface emitting laser (VCSEL) subject to varying injection strength and optical frequency detuning between master and slave lasers. Dynamic maps, generated from high resolution, computer controlled experiments, identify regions of dynamic instability in the parameter space.


Assuntos
Lasers , Desenho de Equipamento , Análise de Falha de Equipamento , Dinâmica não Linear , Espalhamento de Radiação
6.
Chaos ; 20(3): 037102, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20887068

RESUMO

The nonlinear properties of semiconductor lasers and laser amplifiers when subject to optical injection are reviewed and new results are presented for multisection lasers, vertical cavity semiconductor optical amplifiers, and surface-emitting lasers. The main underlying material parameters are outlined and the key design approaches are discussed for both edge-emitting and vertical cavity devices. An overview of theoretical modeling approaches is discussed and a summary of key experimental results is presented. The practical use of optically injected edge-emitting and vertical cavity semiconductor lasers and laser amplifiers is illustrated with examples of applications including, among others, optical logic and chaotic communication.

7.
Sci Rep ; 9(1): 6126, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992501

RESUMO

We analyse the dynamics and conditions for stability in an array of two laterally-coupled nanowire lasers in terms of their separation, difference in resonant frequencies and pumping rate under conditions of weak coupling. We find that the regions of stability are very small and are found close to zero frequency offset between the lasers. Outside these regions various forms of instability including periodic oscillation, chaos and complex dynamics are predicted. Importantly, the analysis of the frequency of periodic oscillations for realistic laser separations and pumping yields values of order 100 GHz thus underlining the significant potential of nanowire laser arrays for ultra-high frequency on-chip systems with very low foot-print and energy requirements.

8.
Sci Rep ; 8(1): 109, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311659

RESUMO

We report here for the first time (to our knowledge), a new and universal mechanism by which a two-element laser array is locked to external optical injection and admits stably injection-locked states within a nontrivial trapezoidal region. The rate equations for the system are studied both analytically and numerically. We derive a simple mathematical expression for the locking conditions, which reveals that two parallel saddle-node bifurcation branches, not reported for conventional single lasers subject to optical injection, delimit the injection locking range and its width. Important parameters are the linewidth enhancement factor, the laser separation, and the frequency offset between the two laterally-coupled lasers; the influence of these parameters on locking conditions is explored comprehensively. Our analytic approximations are validated numerically by using a path continuation technique as well as direct numerical integration of the rate equations. More importantly, our results are not restricted by waveguiding structures and uncover a generic locking behavior in the lateral arrays in the presence of injection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA