Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 213(1): 66-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27880007

RESUMO

Contents 66 I. 67 II. 68 III. 69 IV. 70 V. 73 VI. 75 VII. 77 78 References 78 SUMMARY: Recent decades have seen declines of entire plant clades while other clades persist despite changing environments. We suggest that one reason why some clades persist is that species within these clades use similar habitats, because such similarity may increase the degree of co-occurrence of species within clades. Traditionally, co-occurrence among clade members has been suggested to be disadvantageous because of increased competition and enemy pressure. Here, we hypothesize that increased co-occurrence among clade members promotes mutualist exchange, niche expansion or hybridization, thereby helping species avoid population decline from environmental change. We review the literature and analyse published data for hundreds of plant clades (genera) within a well-studied region and find major differences in the degree to which species within clades occupy similar habitats. We tentatively show that, in clades for which species occupy similar habitats, species tend to exhibit increased co-occurrence, mutualism, niche expansion, and hybridization - and rarely decline. Consistently, throughout the geological past, clades whose species occupied similar habitats often persisted through long time-spans. Overall, for many plant species, the occupation of similar habitats among fellow clade members apparently reduced their vulnerability to environmental change. Future research should identify when and how this previously unrecognized eco-evolutionary feedback operates.


Assuntos
Ecossistema , Retroalimentação , Filogenia , Simbiose/fisiologia , Modelos Teóricos , Especificidade da Espécie
2.
Biol Lett ; 11(9): 20150408, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26333663

RESUMO

During the late nineteenth century, Europeans introduced rabbits to many of the sub-Antarctic islands, environments that prior to this had been devoid of mammalian herbivores. The impacts of rabbits on indigenous ecosystems are well studied; notably, they cause dramatic changes in plant communities and promote soil erosion. However, the responses of fungal communities to such biotic disturbances remain unexplored. We used metabarcoding of soil extracellular DNA to assess the diversity of plant and fungal communities at sites on the sub-Antarctic Kerguelen Islands with contrasting histories of disturbance by rabbits. Our results suggest that on these islands, the simplification of plant communities and increased erosion resulting from the introduction of rabbits have driven compositional changes, including diversity reductions, in indigenous soil fungal communities. Moreover, there is no indication of recovery at sites from which rabbits were removed 20 years ago. These results imply that introduced herbivores have long-lasting and multifaceted effects on fungal biodiversity as well as highlight the low resiliency of sub-Antarctic ecosystems.


Assuntos
Fungos/fisiologia , Espécies Introduzidas , Fenômenos Fisiológicos Vegetais , Coelhos , Animais , Regiões Antárticas , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Fungos/classificação , Herbivoria , Ilhas , Microbiologia do Solo
3.
Mol Phylogenet Evol ; 65(2): 748-56, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22871399

RESUMO

The origins and evolution of sub-Antarctic island floras are not well understood. In particular there is uncertainty about the ages of the contemporary floras and the ultimate origins of the lineages they contain. Pringlea R. Br. (Brassicaceae) is a monotypic genus endemic to four sub-Antarctic island groups in the southern Indian Ocean. Here we used sequences from both the chloroplast and nuclear genomes to examine the phylogenetic position of this enigmatic genus. Our analyses confirm that Pringlea falls within the tribe Thelypodieae and provide a preliminary view of its relationships within the group. Divergence time estimates and ancestral area reconstructions imply Pringlea diverged from a South American ancestor ~5 Myr ago. It remains unclear whether the ancestor of Pringlea dispersed directly to the South Indian Ocean Province (SIOP) or used Antarctica as a stepping-stone; what is clear, however, is that following arrival in the SIOP several additional long-distance dispersal events must be inferred to explain the current distribution of this species. Our analyses also suggest that although Pringlea is likely to have inherited cold tolerance from its closest relatives, the distinctive morphology of this species evolved only after it split from the South American lineage. More generally, our results lend support to the hypothesis that angiosperms persisted on the sub-Antarctic islands throughout the Pliocene and Pleistocene. Taken together with evidence from other sub-Antarctic island plant groups, they suggest the extant flora of sub-Antarctic is likely to have been assembled over a broad time period and from lineages with distinctive biogeographic histories.


Assuntos
Brassicaceae/classificação , Evolução Molecular , Filogenia , Teorema de Bayes , Brassicaceae/genética , Núcleo Celular/genética , DNA de Cloroplastos/genética , Oceano Índico , Ilhas , Modelos Genéticos , Filogeografia , Análise de Sequência de DNA
4.
Am J Bot ; 99(1): 36-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22210841

RESUMO

PREMISE OF THE STUDY: While plants show lineage-specific differences in metabolite composition, plant metabolites are also known to vary in response to the environment. The extent to which these different determinants of metabolite composition are mutually independent and recognizable is unknown. Moreover, the extent to which the metabolome can reconcile evolutionary constraint with the needs of the plant for rapid environmental response is unknown. We investigated these questions in plant species representing different phylogenetic lineages and growing in different subantarctic island environments. We studied their amines-metabolites involved in plant response to environmental conditions. METHODS: Nine species were sampled under high salinity, water saturation, and altitude on the Kerguelen Islands. Their profiles of free aromatic, aliphatic, and acetyl-conjugated amines were determined by HPLC. We related amine composition to species and environment using generalized discriminant analyses. KEY RESULTS: Amine composition differed significantly between species within the same environment, and the differences reflected phylogenetic positions. Moreover, across all species, amine metabolism differed between environments, and different lineages occupied different absolute positions in amine/environment space. Interestingly, all species had the same relative shifts in amine composition between environments. CONCLUSION: Our results indicate a similar response of amine composition to abiotic environments in distantly related angiosperms, suggesting environmental flexibility of species is maintained despite major differences in amine composition among lineages. These results aid understanding of how in nature the plant metabolome integrates ecology and evolution, thus providing primordial information on adaptive mechanisms of plant metabolism to climate change.


Assuntos
Aminas/metabolismo , Evolução Biológica , Magnoliopsida/metabolismo , Transdução de Sinais , Adaptação Fisiológica , Altitude , Regiões Antárticas , Meio Ambiente , Ilhas do Oceano Índico , Magnoliopsida/genética , Filogenia , Fenômenos Fisiológicos Vegetais , Salinidade , Especificidade da Espécie , Água
5.
Plants (Basel) ; 8(7)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331007

RESUMO

Plants produce a high diversity of metabolites which help them sustain environmental stresses and are involved in local adaptation. However, shaped by both the genome and the environment, the patterns of variation of the metabolome in nature are difficult to decipher. Few studies have explored the relative parts of geographical region versus environment or phenotype in metabolomic variability within species and none have discussed a possible effect of the region on the correlations between metabolites and environments or phenotypes. In three sub-Antarctic Ranunculus species, we examined the role of region in metabolite differences and in the relationship between individual compounds and environmental conditions or phenotypic traits. Populations of three Ranunculus species were sampled across similar environmental gradients in two distinct geographical regions in îles Kerguelen. Two metabolite classes were studied, amines (quantified by high-performance liquid chromatography and fluorescence spectrophotometry) and flavonols (quantified by ultra-high-performance liquid chromatography with triple quadrupole mass spectrometry). Depending on regions, the same environment or the same trait may be related to different metabolites, suggesting metabolite redundancy within species. In several cases, a given metabolite showed different or even opposite relations with the same environmental condition or the same trait across the two regions, suggesting metabolite versatility within species. Our results suggest that metabolites may be functionally redundant and versatile within species, both in their response to environments and in their relation with the phenotype. These findings open new perspectives for understanding evolutionary responses of plants to environmental changes.

6.
Environ Pollut ; 202: 66-77, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25813422

RESUMO

Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental complexity. We provide new insights into the understanding of the impact of molecular and cellular responses on individual and population dynamics and assess the potential related effects on communities and ecosystem functioning.


Assuntos
Ecossistema , Invertebrados/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Animais , Evolução Biológica , Invertebrados/efeitos dos fármacos , Fotossíntese , Plantas/efeitos dos fármacos , Especificidade da Espécie
7.
New Phytol ; 162(3): 705-715, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33873770

RESUMO

• Early development of Kerguelen cabbage (Pringlea antiscorbutica) was studied in the Kerguelen archipelago, its natural habitat, and under laboratory conditions. Polyamines, which are involved in developmental processes and responses to stress in several plant species, were used as markers of physiological status of P. antiscorbutica seedlings. • Analysis under laboratory conditions of responses to low water availability and to salinity enabled identification of major environmental constraints restricting seedling development in the subantarctic region. • Salt stress was found to modify polyamine distribution between seedling organs, in controlled experiments and in the field, thus indicating that polyamine responses to salt stress were functional in the field at Kerguelen. By contrast, exposure to low water availability induced different polyamine responses in controlled experiments and in the field. • The present work thus shows that, under certain conditions, polyamine concentrations can be used as a marker of specific stress responses of seedlings in the field. Discrepancies are discussed in terms of growth conditions in the laboratory and of combined stresses in natural habitats.

8.
J Nat Prod ; 68(2): 234-6, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15730250

RESUMO

Glucosinolates in the subantarctic Kerguelen cabbage (Pringlea antiscorbutica) were determined by HPLC. Glucoerucin (6) was present only in the seeds, whereas sinigrin (2), gluconapin (3), n-butyl glucosinolate (4), glucoraphanin (1), and glucotropaeolin (5) were present in both the seeds and leaves. High concentrations of glucosinolates, precursors of bioactive isothiocyanates, were found in the leaves of Kerguelen cabbage. In particular, the lack of unhealthy beta-hydroxylated aliphatic side-chain glucosinolates is supportive of this vegetable being a possible dietary source with a high nutritional value.


Assuntos
Brassica/química , Glucose/análogos & derivados , Glucosinolatos/isolamento & purificação , Verduras/química , Ácido Ascórbico/análise , Austrália , Glucose/análise , Glucose/química , Glucose/isolamento & purificação , Glucosinolatos/análise , Glucosinolatos/química , Imidoésteres/análise , Imidoésteres/química , Imidoésteres/isolamento & purificação , Valor Nutritivo , Folhas de Planta/química , Sementes/química
9.
J Exp Bot ; 53(373): 1463-73, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12021294

RESUMO

Polyamine involvement in root development at low temperature was studied in seedlings of Pringlea antiscorbutica R. Br. This unique endemic cruciferous species from the subantarctic zone is subjected to strong environmental constraints and shows high polyamine contents. In the present study, free polyamine levels were modified by inhibitors of polyamine biosynthesis (D-arginine, difluoromethylornithine, cyclohexylammonium, and methylglyoxal-bis-guanylhydrazone) and variations of the endogenous pools were compared to changes in root growth. The arginine decarboxylase pathway, rather than that of ornithine decarboxylase, seemed to play a major role in polyamine synthesis in Pringlea antiscorbutica seedlings. Root, but not shoot, phenotypes were greatly affected by these treatments, which modified polyamine endogenous levels according to their expected effects. A positive correlation was found between agmatine level and growth rate of the primary root. Spermidine and spermine contents also showed positive correlations with primary root growth whereas the putrescine level showed neutral or negative effects on this trait. Free polyamines were therefore found to be differentially involved in the phenotypic plasticity of root architecture. A comparison of developmental effects and physiological concentrations suggested that agmatine and spermine in particular may play a significant role in the control of root development.


Assuntos
Brassicaceae/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Poliaminas/metabolismo , Aclimatação/fisiologia , Agmatina/metabolismo , Agmatina/farmacologia , Regiões Antárticas , Arginina/farmacologia , Brassicaceae/efeitos dos fármacos , Carboxiliases/metabolismo , Temperatura Baixa , Interações Medicamentosas , Eflornitina/farmacologia , Germinação/efeitos dos fármacos , Glutaratos/farmacologia , Mitoguazona/farmacologia , Ornitina Descarboxilase/metabolismo , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Poliaminas/antagonistas & inibidores , Putrescina/metabolismo , Putrescina/farmacologia , Sementes/crescimento & desenvolvimento , Espermidina/metabolismo , Espermidina/farmacologia , Espermina/metabolismo
10.
J Exp Bot ; 55(399): 1125-34, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15073215

RESUMO

Pringlea antiscorbutica, which is the sole endemic crucifer in the subantarctic zone, undergoes seedling development in a harsh and cold environment. Since, at the mature stage, this species exhibits several adaptations linked to cold tolerance such as high polyamine levels, potential adaptations and polyamine response were investigated in seedlings. In order to assess the specificity of responses, P. antiscorbutica was compared with Arabidopsis thaliana, which is characterized by a life cycle preventing cold exposure at seedling stage. P. antiscorbutica and A. thaliana seedlings were found to have strikingly contrasted responses to temperature changes and to mineral nutrition. Whereas A. thaliana seedlings showed the typical growth arrest of chilling-sensitive plants, P. antiscorbutica seedlings showed optimal root growth at low temperature (5/10 degrees C) and temperate conditions caused the early arrest of root growth. Cold tolerance was associated with increased levels of polyamines or with maintenance of high levels of polyamines. Comparison of both species showed that polyamine levels could be a significant marker of chilling tolerance in seedlings. Treatments with varying mineral supply showed a positive relationship between root growth rate and variations of agmatine and putrescine endogenous contents in roots of P. antiscorbutica. This may be the first demonstration that, even under conditions of accumulation induced by environmental stress, polyamine levels can still be correlated with developmental processes. Com parison of mineral supply and temperature effects strongly indicated a trade-off of polyamine involvement between development and response to stress.


Assuntos
Brassicaceae/crescimento & desenvolvimento , Minerais/metabolismo , Poliaminas/metabolismo , Plântula/crescimento & desenvolvimento , Austrália , Cromatografia Líquida de Alta Pressão , Clima Frio , Cinética , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA