Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immun Ageing ; 19(1): 31, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820929

RESUMO

BACKGROUND: Telomerase, the enzyme capable of elongating telomeres, is usually restricted in human somatic cells, which contributes to progressive telomere shortening with cell-division and ageing. T and B-cells cells are somatic cells that can break this rule and can modulate telomerase expression in a homeostatic manner. Whereas it seems intuitive that an immune cell type that depends on regular proliferation outbursts for function may have evolved to modulate telomerase expression it is less obvious why others may also do so, as has been suggested for macrophages and neutrophils in some chronic inflammation disease settings. The gut has been highlighted as a key modulator of systemic ageing and is a key tissue where inflammation must be carefully controlled to prevent dysfunction. How telomerase may play a role in innate immune subtypes in the context of natural ageing in the gut, however, remains to be determined. RESULTS: Using the zebrafish model, we show that subsets of gut immune cells have telomerase-dependent"hyper-long" telomeres, which we identified as being predominantly macrophages and dendritics (mpeg1.1+ and cd45+mhcII+). Notably, mpeg1.1+ macrophages have much longer telomeres in the gut than in their haematopoietic tissue of origin, suggesting that there is modulation of telomerase in these cells, in the gut. Moreover, we show that a subset of gut mpeg1.1+ cells express telomerase (tert) in young WT zebrafish, but that the relative proportion of these cells decreases with ageing. Importantly, this is accompanied by telomere shortening and DNA damage responses with ageing and a telomerase-dependent decrease in expression of autophagy and immune activation markers. Finally, these telomerase-dependent molecular alterations are accompanied by impaired phagocytosis of E. coli and increased gut permeability in vivo. CONCLUSIONS: Our data show that limiting levels of telomerase lead to alterations in gut immunity, impacting on the ability to clear pathogens in vivo. These are accompanied by increased gut permeability, which, together, are likely contributors to local and systemic tissue degeneration and increased susceptibility to infection with ageing.

2.
PLoS Genet ; 13(3): e1006652, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28288153

RESUMO

[This corrects the article DOI: 10.1371/journal.pgen.1003214.].

3.
PLoS Genet ; 12(1): e1005798, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26789415

RESUMO

Telomeres shorten with each cell division and telomere dysfunction is a recognized hallmark of aging. Tissue proliferation is expected to dictate the rate at which telomeres shorten. We set out to test whether proliferative tissues age faster than non-proliferative due to telomere shortening during zebrafish aging. We performed a prospective study linking telomere length to tissue pathology and disease. Contrary to expectations, we show that telomeres shorten to critical lengths only in specific tissues and independently of their proliferation rate. Short telomeres accumulate in the gut but not in other highly proliferative tissues such as the blood and gonads. Notably, the muscle, a low proliferative tissue, accumulates short telomeres and DNA damage at the same rate as the gut. Together, our work shows that telomere shortening and DNA damage in key tissues triggers not only local dysfunction but also anticipates the onset of age-associated diseases in other tissues, including cancer.


Assuntos
Envelhecimento/genética , Apoptose/genética , Neoplasias/genética , Encurtamento do Telômero/genética , Telômero/genética , Envelhecimento/patologia , Animais , Células Sanguíneas , Divisão Celular/genética , Dano ao DNA/genética , Humanos , Rim/metabolismo , Neoplasias/etiologia , Especificidade de Órgãos , Peixe-Zebra
4.
PLoS Genet ; 9(1): e1003214, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349637

RESUMO

Telomerase activity is restricted in humans. Consequentially, telomeres shorten in most cells throughout our lives. Telomere dysfunction in vertebrates has been primarily studied in inbred mice strains with very long telomeres that fail to deplete telomeric repeats during their lifetime. It is, therefore, unclear how telomere shortening regulates tissue homeostasis in vertebrates with naturally short telomeres. Zebrafish have restricted telomerase expression and human-like telomere length. Here we show that first-generation tert(-/-) zebrafish die prematurely with shorter telomeres. tert(-/-) fish develop degenerative phenotypes, including premature infertility, gastrointestinal atrophy, and sarcopaenia. tert(-/-) mutants have impaired cell proliferation, accumulation of DNA damage markers, and a p53 response leading to early apoptosis, followed by accumulation of senescent cells. Apoptosis is primarily observed in the proliferative niche and germ cells. Cell proliferation, but not apoptosis, is rescued in tp53(-/-)tert(-/-) mutants, underscoring p53 as mediator of telomerase deficiency and consequent telomere instability. Thus, telomerase is limiting for zebrafish lifespan, enabling the study of telomere shortening in naturally ageing individuals.


Assuntos
Envelhecimento/genética , Telomerase , Encurtamento do Telômero/genética , Proteína Supressora de Tumor p53 , Peixe-Zebra , Animais , Apoptose/genética , Linhagem Celular , Proliferação de Células , Senescência Celular , Dano ao DNA/genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
5.
Dis Model Mech ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441152

RESUMO

Telomere length, unlike most genetic traits, is epigenetic, in the sense that it is not fully coded by the genome. Telomeres vary in length and randomly assort to the progeny leaving some individuals with longer and others with shorter telomeres. Telomerase activity counteracts this by extending telomeres in the germline and during embryogenesis but sizeable variances remain in telomere length. This effect is exacerbated by the absence of fully active telomerase. Telomerase heterozygous animals (tert+/-) have reduced telomerase activity and their telomeres fail to be elongated to wild-type average length, meaning that - with every generation - they decrease. After a given number of successive generations of telomerase-insufficient crosses, telomeres become critically short and cause organismal defects that, in humans, are known as telomere biology disorders. Importantly, these defects also occur in wild-type (tert+/+) animals derived from such tert+/- incrosses. Despite these tert+/+ animals being proficient for telomerase, they have shorter than average telomere length and, although milder, develop phenotypes that are similar to those of telomerase mutants. Here, we discuss the impact of this phenomenon on human pathologies associated with telomere length, provide a brief overview of telomere biology across species and propose specific measures for working with telomerase-deficient zebrafish.


Assuntos
Telomerase , Animais , Humanos , Telomerase/genética , Peixe-Zebra/genética , Fenótipo , Telômero/genética , Epigênese Genética
6.
Aging Cell ; 22(6): e13835, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37039087

RESUMO

Senescence drives the onset and severity of multiple ageing-associated diseases and frailty. As a result, there has been an increased interest in mechanistic studies and in the search for compounds targeting senescent cells, known as senolytics. Mammalian models are commonly used to test senolytics and generate functional and toxicity data at the level of organs and systems, yet this is expensive and time consuming. Zebrafish share high homology in genes associated with human ageing and disease. They can be genetically modified relatively easily. In larvae, most organs develop within 5 days of fertilisation and are transparent, which allows tracking of fluorescent cells in vivo in real time, testing drug off-target toxicity and assessment of cellular and phenotypic changes. Here, we have generated a transgenic zebrafish line that expresses green fluorescent protein (GFP) under the promoter of a key senescence marker, p21. We show an increase in p21:GFP+ cells in larvae following exposure to ionising radiation and with natural ageing. p21:GFP+ cells display other markers of senescence, including senescence-associated ß-galactosidase and IL6. The observed increase in senescent cells following irradiation is associated with a reduction in the thickness of muscle fibres and mobility, two important ageing phenotypes. We also show that quercetin and dasatinib, two senolytics currently in clinical trials, reduce the number of p21:GFP+ cells, in a rapid 5-day assay. This model provides an important tool to study senescence in a living organism, allowing the rapid selection of senolytics before moving to more expensive and time-consuming mammalian systems.


Assuntos
Senescência Celular , Peixe-Zebra , Animais , Envelhecimento/genética , Proteínas de Fluorescência Verde/genética , Mamíferos , Senoterapia , Peixe-Zebra/genética
7.
Blood ; 115(16): 3269-77, 2010 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-20190194

RESUMO

Interleukin-7 (IL-7) is an essential cytokine for T-cell development and homeostasis. It is well established that IL-7 promotes the transcriptional down-regulation of IL7RA, leading to decreased IL-7Ralpha surface expression. However, it is currently unknown whether IL-7 regulates the intracellular trafficking and early turnover of its receptor on ligand binding. Here, we show that, in steady-state T cells, IL-7Ralpha is slowly internalized and degraded while a significant fraction recycles back to the surface. On IL-7 stimulation, there is rapid IL-7Ralpha endocytosis via clathrin-coated pits, decreased receptor recycling, and accelerated lysosome and proteasome-dependent degradation. In accordance, the half-life of IL-7Ralpha decreases from 24 hours to approximately 3 hours after IL-7 treatment. Interestingly, we further demonstrate that clathrin-dependent endocytosis is necessary for efficient IL-7 signal transduction. In turn, pretreatment of T cells with JAK3 or pan-JAK inhibitors suggests that IL-7Ralpha degradation depends on the activation of the IL-7 signaling effector JAK3. Overall, our findings indicate that IL-7 triggers rapid IL-7Ralpha endocytosis, which is required for IL-7-mediated signaling and subsequent receptor degradation.


Assuntos
Vesículas Revestidas por Clatrina/metabolismo , Interleucina-7/metabolismo , Janus Quinase 3/metabolismo , Receptores de Interleucina-7/metabolismo , Linfócitos T/metabolismo , Linhagem Celular , Separação Celular , Vesículas Revestidas por Clatrina/imunologia , Endocitose/fisiologia , Citometria de Fluxo , Humanos , Immunoblotting , Interleucina-7/imunologia , Janus Quinase 3/imunologia , Microscopia Confocal , Transporte Proteico/fisiologia , Receptores de Interleucina-7/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia
8.
Aging Cell ; 21(4): e13597, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35315590

RESUMO

Ageing is a significant risk factor for degeneration of the retina. Müller glia cells (MG) are key for neuronal regeneration, so harnessing the regenerative capacity of MG in the retina offers great promise for the treatment of age-associated blinding conditions. Yet, the impact of ageing on MG regenerative capacity is unclear. Here, we show that the zebrafish retina undergoes telomerase-independent, age-related neurodegeneration but that this is insufficient to stimulate MG proliferation and regeneration. Instead, age-related neurodegeneration is accompanied by MG morphological aberrations and loss of vision. Mechanistically, yes-associated protein (Yap), part of the Hippo signalling, has been shown to be critical for the regenerative response in the damaged retina, and we show that Yap expression levels decline with ageing. Despite this, morphologically and molecularly altered aged MG retain the capacity to regenerate neurons after acute light damage, therefore, highlighting key differences in the MG response to high-intensity acute damage versus chronic neuronal loss in the zebrafish retina.


Assuntos
Retina , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Proliferação de Células/fisiologia , Células Ependimogliais , Neuroglia/metabolismo , Retina/metabolismo
9.
Bio Protoc ; 8(3)2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29457041

RESUMO

The Smurf Assay (SA) was initially developed in the model organism Drosophila melanogaster where a dramatic increase of intestinal permeability has been shown to occur during aging (Rera et al., 2011). We have since validated the protocol in multiple other model organisms (Dambroise et al., 2016) and have utilized the assay to further our understanding of aging (Tricoire and Rera, 2015; Rera et al., 2018). The SA has now also been used by other labs to assess intestinal barrier permeability (Clark et al., 2015; Katzenberger et al., 2015; Barekat et al., 2016; Chakrabarti et al., 2016; Gelino et al., 2016). The SA in itself is simple; however, numerous small details can have a considerable impact on its experimental validity and subsequent interpretation. Here, we provide a detailed update on the SA technique and explain how to catch a Smurf while avoiding the most common experimental fallacies.

10.
Mech Ageing Dev ; 160: 69-92, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693441

RESUMO

Over 60% of people aged over 65 are affected by multiple morbidities, which are more difficult to treat, generate increased healthcare costs and lead to poor quality of life compared to individual diseases. With the number of older people steadily increasing this presents a societal challenge. Age is the major risk factor for age-related diseases and recent research developments have led to the proposal that pharmacological interventions targeting common mechanisms of ageing may be able to delay the onset of multimorbidity. Here we review the state of the knowledge of multimorbidity, appraise the available evidence supporting the role of mechanisms of ageing in the development of the most common age-related diseases and assess potential molecules that may successfully target those key mechanisms.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Idoso , Idoso de 80 Anos ou mais , Humanos
11.
Curr Opin Cell Biol ; 24(6): 804-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23127607

RESUMO

Telomerase expression is restricted in human cells and so telomeres shorten throughout our lives, providing a tumour suppressor mechanism that limits cell proliferation. As a trade-off, continuous telomere erosion results in replicative senescence and contributes to ageing. Recently, telomerase therapies were proposed as a valid approach to rescue degenerative phenotypes caused by telomere dysfunction. However, systemic effects initiated by short telomeres may prove dominant in limiting tissue renewal in the whole organism. Most of our knowledge of telomere biology derives from mouse models that do not rely on telomere exhaustion for controlling cell proliferation and tissue homeostasis. In order to understand the impact of telomere shortening in natural ageing, we need to investigate animal models that, like humans, have evolved to have telomere length as a cell division clock.


Assuntos
Envelhecimento/genética , Encurtamento do Telômero , Animais , Relógios Biológicos , Divisão Celular , Senescência Celular/genética , Humanos , Modelos Animais , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Encurtamento do Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA