Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(5): 1980-1994, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38934408

RESUMO

PURPOSE: To develop a fast denoising framework for high-dimensional MRI data based on a self-supervised learning scheme, which does not require ground truth clean image. THEORY AND METHODS: Quantitative MRI faces limitations in SNR, because the variation of signal amplitude in a large set of images is the key mechanism for quantification. In addition, the complex non-linear signal models make the fitting process vulnerable to noise. To address these issues, we propose a fast deep-learning framework for denoising, which efficiently exploits the redundancy in multidimensional MRI data. A self-supervised model was designed to use only noisy images for training, bypassing the challenge of clean data paucity in clinical practice. For validation, we used two different datasets of simulated magnetization transfer contrast MR fingerprinting (MTC-MRF) dataset and in vivo DWI image dataset to show the generalizability. RESULTS: The proposed method drastically improved denoising performance in the presence of mild-to-severe noise regardless of noise distributions compared to previous methods of the BM3D, tMPPCA, and Patch2self. The improvements were even pronounced in the following quantification results from the denoised images. CONCLUSION: The proposed MD-S2S (Multidimensional-Self2Self) denoising technique could be further applied to various multi-dimensional MRI data and improve the quantification accuracy of tissue parameter maps.


Assuntos
Algoritmos , Encéfalo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Razão Sinal-Ruído , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina Supervisionado , Aprendizado Profundo
2.
Magn Reson Med ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129199

RESUMO

PURPOSE: To implement rosette readout trajectories with compressed sensing reconstruction for fast and motion-robust CEST and magnetization transfer contrast imaging with inherent correction of B0 inhomogeneity. METHODS: A pulse sequence was developed for fast saturation transfer imaging using a stack of rosette trajectories with a higher sampling density near the k-space center. Each rosette lobe was segmented into two halves to generate dual-echo images. B0 inhomogeneities were estimated using the phase difference between the images and corrected subsequently. The rosette-based imaging was evaluated in comparison to a fully sampled Cartesian trajectory and demonstrated on CEST phantoms (creatine solutions and egg white) and healthy volunteers at 3 T. RESULTS: Compared with the conventional Cartesian acquisition, compressed sensing reconstructed rosette images provided image quality with overall higher contrast-to-noise ratio and significantly faster readout time. Accurate B0 map estimation was achieved from the rosette acquisition with a negligible bias of 0.01 Hz between the rosette and dual-echo Cartesian gradient echo B0 maps, using the latter as ground truth. The water-saturation spectra (Z-spectra) and amide proton transfer weighted signals obtained from the rosette-based sequence were well preserved compared with the fully sampled data, both in the phantom and human studies. CONCLUSIONS: Fast, motion-robust, and inherent B0-corrected CEST and magnetization transfer contrast imaging using rosette trajectories could improve subject comfort and compliance, contrast-to-noise ratio, and provide inherent B0 homogeneity information. This work is expected to significantly accelerate the translation of CEST-MRI into a robust, clinically viable approach.

3.
Magn Reson Med ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39086185

RESUMO

PURPOSE: To evaluate the influence of the confounding factors, direct water saturation (DWS), and magnetization transfer contrast (MTC) effects on measured Z-spectra and amide proton transfer (APT) contrast in brain tumors. METHODS: High-grade glioma patients were scanned using an RF saturation-encoded 3D MR fingerprinting (MRF) sequence at 3 T. For MRF reconstruction, a recurrent neural network was designed to learn free water and semisolid macromolecule parameter mappings of the underlying multiple tissue properties from saturation-transfer MRF signals. The DWS spectra and MTC spectra were synthesized by solving Bloch-McConnell equations and evaluated in brain tumors. RESULTS: The dominant contribution to the saturation effect at 3.5 ppm was from DWS and MTC effects, but 25%-33% of the saturated signal in the gadolinium-enhancing tumor (13%-20% for normal tissue) was due to the APT effect. The APT# signal of the gadolinium-enhancing tumor was significantly higher than that of the normal-appearing white matter (10.1% vs. 8.3% at 1 µT and 11.2% vs. 7.8% at 1.5 µT). CONCLUSION: The RF saturation-encoded MRF allowed us to separate contributions to the saturation signal at 3.5 ppm in the Z-spectrum. Although free water and semisolid MTC are the main contributors, significant APT contrast between tumor and normal tissues was observed.

4.
Magn Reson Med ; 92(2): 660-675, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38525601

RESUMO

PURPOSE: To investigate the effects of compartmental anisotropy on filtered exchange imaging (FEXI) in white matter (WM). THEORY AND METHODS: FEXI signals were measured using multiple combinations of diffusion filter and detection directions in five healthy volunteers. Additional filters, including a trace-weighted diffusion filter with trapezoidal gradients, a spherical b-tensor encoded diffusion filter, and a T2 filter, were tested with trace-weighted diffusion detection. RESULTS: A large range of apparent exchange rates (AXR) and both positive and negative filter efficiencies (σ) were found depending on the mutual orientation of the filter and detection gradients relative to WM fiber orientation. The data demonstrated that the fast-diffusion compartment suppressed by diffusional filtering is not exclusively extra-cellular, but also intra-cellular. While not comprehensive, a simple two-compartment diffusion tensor model with water exchange was able to account qualitatively for the trends in positive and negative filtering efficiencies, while standard model imaging (SMI) without exchange could not. This two-compartment diffusion tensor model also demonstrated smaller AXR variances across subjects. When employing trace-weighted diffusion detection, AXR values were on the order of the R1 (=1/T1) of water at 3T for crossing fibers, while being less than R1 for parallel fibers. CONCLUSION: Orientation-dependent AXR and σ values were observed when using multi-orientation filter and detection gradients in FEXI, indicating that WM FEXI models need to account for compartmental anisotropy. When using trace-weighted detection, AXR values were on the order of or less than R1, complicating the interpretation of FEXI results in WM in terms of biological exchange properties. These findings may contribute toward better understanding of FEXI results in WM.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Humanos , Anisotropia , Substância Branca/diagnóstico por imagem , Adulto , Masculino , Imagem de Tensor de Difusão/métodos , Feminino , Algoritmos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos
5.
Magn Reson Med ; 92(4): 1456-1470, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38748853

RESUMO

PURPOSE: To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS: Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS: The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION: The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.


Assuntos
Amidas , Encéfalo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Amidas/química , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Imagem Ecoplanar/métodos , Glioma/diagnóstico por imagem , Algoritmos , Razão Sinal-Ruído , Neoplasias Encefálicas/diagnóstico por imagem , Adulto , Processamento de Imagem Assistida por Computador/métodos , Masculino , Feminino , Guanidina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA