Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 128(4): 626-637, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36522480

RESUMO

BACKGROUND: Malignant phyllodes tumour (MPT) is a rare breast malignancy with epithelial and mesenchymal features. Currently, there are no appropriate research models or effective targeted therapeutic approaches for MPT. METHODS: We collected fresh frozen tissues from nine patients with MPT and performed whole-exome and RNA sequencing. Additionally, we established patient-derived xenograft (PDX) models from patients with MPT and tested the efficacy of targeting dysregulated pathways in MPT using the PDX model from one MPT. RESULTS: MPT has unique molecular characteristics when compared to breast cancers of epithelial origin and can be classified into two groups. The PDX model derived from one patient with MPT showed that the mouse epithelial component increased during tumour growth. Moreover, targeted inhibition of platelet-derived growth factor receptor (PDGFR) and phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) by imatinib mesylate and PKI-587 showed in vivo tumour suppression effects. CONCLUSIONS: This study revealed the molecular profiles of MPT that can lead to molecular classification and potential targeted therapy, and suggested that the MPT PDX model can be a useful tool for studying the pathogenesis of fibroepithelial neoplasms and for preclinical drug screening to find new therapeutic strategies for MPT.


Assuntos
Neoplasias da Mama , Neoplasias Fibroepiteliais , Tumor Filoide , Humanos , Animais , Camundongos , Feminino , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Mesilato de Imatinib , Neoplasias da Mama/patologia , Tumor Filoide/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Mamíferos
2.
J Breast Cancer ; 27(1): 37-53, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233337

RESUMO

PURPOSE: In this study, we aimed to establish humanized patient-derived xenograft (PDX) models for triple-negative breast cancer (TNBC) using cord blood (CB) hematopoietic stem cells (HSCs). Additionally, we attempted to characterize the immune microenvironment of the humanized PDX model to understand the potential implications of altered tumor-immune interactions in the humanized PDX model on the behavior of TNBC cells. METHODS: To establish a humanized mouse model, high-purity CD34+ HSCs from CB were transplanted into immunodeficient NOD scid γ mice. Peripheral and intratumoral immune cell compositions of humanized and non-humanized mice were compared. Additionally, RNA sequencing of the tumor tissues was performed to characterize the gene expression features associated with humanization. RESULTS: After transplanting the CD34+ HSCs, CD45+ human immune cells appeared within five weeks. A humanized mouse model showed viable human immune cells in the peripheral blood, lymphoid organs, and in the tumor microenvironment. Humanized TNBC PDX models showed varying rates of tumor growth compared to that of non-humanized mice. RNA sequencing of the tumor tissue showed significant alterations in tumor tissues from the humanized models. tumor necrosis factor receptor superfamily member 11B (TNFRSF11B) is a shared downregulated gene in tumor tissues from humanized models. Silencing of TNFRSF11B in TNBC cell lines significantly reduced cell proliferation, migration, and invasion in vitro. Additionally, TNFRSF11B silenced cells showed decreased tumorigenicity and metastatic capacity in vivo. CONCLUSION: Humanized PDX models successfully recreated tumor-immune interactions in TNBC. TNFRSF11B, a commonly downregulated gene in humanized PDX models, may play a key role in tumor growth and metastasis. Differential tumor growth rates and gene expression patterns highlighted the complexities of the immune response in the tumor microenvironment of humanized PDX models.

3.
J Breast Cancer ; 26(1): 60-76, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36762781

RESUMO

PURPOSE: Patients with triple-negative breast cancer (TNBC) have an increased risk of distant metastasis compared to those with other subtypes. In this study, we aimed to identify the genes associated with distant metastasis in TNBC and their underlying mechanisms. METHODS: We established patient-derived xenograft (PDX) models using surgically resected breast cancer tissues from 31 patients with TNBC. Among these, 15 patients subsequently developed distant metastases. Candidate metastasis-associated genes were identified using RNA sequencing. In vitro wound healing, proliferation, migration, and invasion assays and in vivo tumor xenograft and metastasis assays were performed to determine the functional importance of aldo-keto reductase family 1 member C2 (AKR1C2). Additionally, we used the METABRIC dataset to investigate the potential role of AKR1C2 in regulating TNBC subtypes and their downstream signaling activities. RESULTS: RNA sequencing of primary and PDX tumors showed that genes involved in steroid hormone biosynthesis, including AKR1C2, were significantly upregulated in patients who subsequently developed metastasis. In vitro and in vivo assays showed that silencing of AKR1C2 resulted in reduced cell proliferation, migration, invasion, tumor growth, and incidence of lung metastasis. AKR1C2 was upregulated in the luminal androgen receptor (LAR) subtype of TNBC in the METABRIC dataset, and AKR1C2 silencing resulted in the downregulation of LAR classifier genes in TNBC cell lines. The androgen receptor (AR) gene was a downstream mediator of AKR1C2-associated phenotypes in TNBC cells. AKR1C2 expression was associated with gene expression pathways that regulate AR expression, including JAK-STAT signaling or interleukin 6 (IL-6). The levels of phospho-signal transducer and activator of transcription and IL-6, along with secreted IL-6, were significantly downregulated in AKR1C2-silenced TNBC cells. CONCLUSION: Our data indicate that AKR1C2 is an important regulator of cancer growth and metastasis in TNBC and may be a critical determinant of LAR subtype features.

4.
Mol Cancer Res ; 21(7): 726-740, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37040163

RESUMO

Patients with triple-negative breast cancer (TNBC) often develop metastases in visceral organs including the liver, but the detailed molecular mechanisms of TNBC liver metastasis is not clearly understood. In this study, we tried to dissect the process of premetastatic niche formation in the liver by using patient-derived xenograft (PDX) models of TNBC with different metastatic propensity. RNA sequencing of TNBC PDX models that successfully metastasized to liver showed upregulation of the Cx3cr1 gene in the liver microenvironment. In syngeneic breast cancer models, the Cx3cr1 upregulation in liver preceded the development of cancer cell metastasis and was the result of recruitment of CX3CR1-expressing macrophages. The recruitment was induced by the CX3CL1 production from the liver endothelial cells and this CX3CL1-CX3CR1 signaling in the premetastatic niche resulted in upregulation of MMP9 that promoted macrophage migration and cancer cell invasion. In addition, our data suggest that the extracellular vesicles derived from the breast cancer cells induced the TNFα expression in liver, which leads to the CX3CL1 upregulation. Lastly, the plasma CX3CL1 levels in 155 patients with breast cancer were significantly associated with development of liver metastasis. IMPLICATIONS: Our data provides previously unknown cascades regarding the molecular education of premetastatic niche in liver for TNBC.


Assuntos
Vesículas Extracelulares , Neoplasias Hepáticas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Células Endoteliais/metabolismo , Linhagem Celular Tumoral , Neoplasias Hepáticas/metabolismo , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
5.
J Mol Med (Berl) ; 99(12): 1783-1795, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626199

RESUMO

We investigated the molecular mechanisms of paclitaxel resistance in TNBC using seven patient-derived xenograft (PDX) models and TNBC cell lines. Among the seven PDX models, four models showed resistance to paclitaxel. Dysregulation of JAK/STAT pathways and JAK2 copy number gains were observed in the four paclitaxel-resistant PDX tumors. In TNBC cell lines, silencing the JAK2 gene showed a significant but mild synergistic effect when combined with paclitaxel in vitro. However, JAK1/2 inhibitor treatment resulted in restoration of paclitaxel sensitivity in two out of four paclitaxel-resistant PDX models and JAK1/2 inhibitor alone significantly suppressed the tumor growth in one out of the two remaining PDX models. Transcriptome data derived from the murine microenvironmental cells revealed an enrichment of genes involved in the cell cycle processes among the four paclitaxel-resistant PDX tumors. Histologic examination of those PDX tumor tissues showed increased Ki67-positive fibroblasts in the tumor microenvironment. Among the four different cancer-associated fibroblast (CAF) subtypes, cycling CAF exhibiting features of active cell cycle was enriched in the paclitaxel-resistant PDX tumors. Additionally, fibroblasts treated with the conditioned media from the JAK2-silenced breast cancer cells showed downregulation of cell cycle-related genes. Our data suggest that the JAK2 gene may play a critical role in determining responses of TNBC to paclitaxel by modulating the intrinsic susceptibility of cancer cells against paclitaxel and also by eliciting functional transitions of CAF subtypes in the tumor microenvironment. KEY MESSAGES : We investigated the molecular mechanisms of paclitaxel resistance in TNBC. JAK2 signaling was associated with paclitaxel resistance in TNBC PDX models. Paclitaxel-resistant PDX tumors were enriched with microenvironment cCAF subpopulation. JAK2 regulated paclitaxel-resistant CAF phenotype transition.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Janus Quinase 2/genética , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Animais , Antineoplásicos Fitogênicos/farmacologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Nitrilas/farmacologia , Paclitaxel/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral/efeitos dos fármacos
6.
J Breast Cancer ; 23(2): 162-170, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32395375

RESUMO

PURPOSE: Paclitaxel is a cytotoxic chemotherapy commonly used in patients with triple negative breast cancer (TNBC); however, the resistance to paclitaxel is a cause of poor response in the patients. The aim of this study was to examine the role of protein phosphatase 1H (PPM1H) in paclitaxel resistance in breast cancer patients. METHODS: To investigate the function of PPM1H in paclitaxel treatment, we conducted in vitro assays and molecular experiments using a stable cell line (MDA-MB-231) in which PPM1H is overexpressed. We also performed molecular analyses on patient tissue samples. Molecular expression related to PPM1H in breast cancer patients was analyzed using TCGA data. RESULTS: We investigated whether PPM1H was associated with paclitaxel resistance in breast cancer. PPM1H expression was upregulated in breast cancer cells treated with paclitaxel. We also observed that overexpression of PPM1H in breast cancer cells resulted in increased sensitivity to paclitaxel in vitro. Additionally, paclitaxel treatment induced dephosphorylation of cyclin-dependent kinase (CDK) inhibitor p27 (p27), which was more evident in PPM1H-overexpressing cells. To understand how upregulation of PPM1H increases paclitaxel sensitivity, we determined the levels of p27, phospho-p27, and CDK2, since CDK2 exerts antagonistic effects against PPM1H on p27 phosphorylation. The patient-derived xenograft (PDX) tumors that did not respond to paclitaxel showed increased levels of CDK2 and phospho-p27 and decreased levels of total p27 compared to the other breast tumor tissues. The use of dinaciclib, a selective CDK inhibitor, significantly inhibited tumor growth in the PDX model. CONCLUSION: CDK2 kinase activity was significantly upregulated in basal breast cancer tumors and was negatively correlated with p27 protein levels in the TCGA breast cancer dataset, suggesting that targeting CDK2 may be an effective treatment strategy for TNBC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA