Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomolecules ; 14(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397380

RESUMO

Mesoporous bioactive glasses (MBGs) of the SiO2-CaO-P2O5 system are biocompatible materials with a quick and effective in vitro and in vivo bioactive response. MBGs can be enhanced by including therapeutically active ions in their composition, by hosting osteogenic molecules within their mesopores, or by decorating their surfaces with mesenchymal stem cells (MSCs). In previous studies, our group showed that MBGs, ZnO-enriched and loaded with the osteogenic peptide osteostatin (OST), and MSCs exhibited osteogenic features under in vitro conditions. The aim of the present study was to evaluate bone repair capability after large bone defect treatment in distal femur osteoporotic rabbits using MBGs (76%SiO2-15%CaO-5%P2O5-4%ZnO (mol-%)) before and after loading with OST and MSCs from a donor rabbit. MSCs presence and/or OST in scaffolds significantly improved bone repair capacity at 6 and 12 weeks, as confirmed by variations observed in trabecular and cortical bone parameters obtained by micro-CT as well as histological analysis results. A greater effect was observed when OST and MSCs were combined. These findings may indicate the great potential for treating critical bone defects by combining MBGs with MSCs and osteogenic peptides such as OST, with good prospects for translation to clinical practice.


Assuntos
Células-Tronco Mesenquimais , Proteína Relacionada ao Hormônio Paratireóideo , Fragmentos de Peptídeos , Óxido de Zinco , Animais , Coelhos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Dióxido de Silício , Regeneração Óssea , Diferenciação Celular
2.
Acta Biomater ; 166: 655-669, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37142110

RESUMO

Nanotechnology-based approaches are emerging as promising strategies to treat different bone pathologies such as infection, osteoporosis or cancer. To this end, several types of nanoparticles are being investigated, including those based on mesoporous bioactive glasses (MGN) which exhibit exceptional structural and textural properties and whose biological behaviour can be improved by including therapeutic ions in their composition and loading them with biologically active substances. In this study, the bone regeneration capacity and antibacterial properties of MGNs in the SiO2-CaO-P2O5 system were evaluated before and after being supplemented with 2.5% or 4% ZnO and loaded with curcumin. in vitro studies with preosteoblastic cells and mesenchymal stem cells allowed determining the biocompatible MGNs concentrations range. Moreover, the bactericidal effect of MGNs with zinc and curcumin against S. aureus was demonstrated, as a significant reduction of bacterial growth was detected in both planktonic and sessile states and the degradation of a pre-formed bacterial biofilm in the presence of the nanoparticles also occurred. Finally, MC3T3-E1 preosteoblastic cells and S. aureus were co-cultured to investigate competitive colonisation between bacteria and cells in the presence of the MGNs. Preferential colonisation and survival of osteoblasts and effective inhibition of both bacterial adhesion and biofilm formation of S. aureus in the co-culture system were detected. Our study demonstrated the synergistic antibacterial effect of zinc ions combined with curcumin and the enhancement of the bone regeneration characteristics of MGNs containing zinc and curcumin to obtain systems capable of simultaneously promoting bone regeneration and controlling infection. STATEMENT OF SIGNIFICANCE: In search of a new approach to regenerate bone and fight infections, a nanodevice based on mesoporous SiO2-CaO-P2O5 glass nanoparticles enriched with Zn2+ ions and loaded with curcumin was designed. This study demonstrates the synergistic effect of the simultaneous presence of zinc ions and curcumin in the nanoparticles that significantly reduces the bacterial growth in planktonic state and is capable to degrade pre-formed S. aureus biofilms whereas the nanosystem exhibits a cytocompatible behaviour in the presence of preosteoblasts and mesenchymal stem cells. Based on these results, the designed nanocarrier represents a promising alternative for the treatment of acute and chronic infections in bone tissues, while avoiding the significant current problem of bacterial resistance to antibiotics.


Assuntos
Curcumina , Nanopartículas , Curcumina/farmacologia , Dióxido de Silício/química , Zinco/farmacologia , Staphylococcus aureus , Nanopartículas/uso terapêutico , Nanopartículas/química , Osso e Ossos , Antibacterianos/farmacologia , Antibacterianos/química , Íons , Vidro/química
3.
Nanomaterials (Basel) ; 8(8)2018 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-30081542

RESUMO

Mesoporous Bioactive Glasses (MBGs) are a family of bioceramics widely investigated for their putative clinical use as scaffolds for bone regeneration. Their outstanding textural properties allow for high bioactivity when compared with other bioactive materials. Moreover, their great pore volumes allow these glasses to be loaded with a wide range of biomolecules to stimulate new bone formation. In this study, an MBG with a composition, in mol%, of 80% SiO2⁻15% CaO⁻5% P2O5 (Blank, BL) was compared with two analogous glasses containing 4% and 5% of ZnO (4ZN and 5ZN) before and after impregnation with osteostatin, a C-terminal peptide from a parathyroid hormone-related protein (PTHrP107-111). Zn2+ ions were included in the glass for their bone growth stimulator properties, whereas osteostatin was added for its osteogenic properties. Glasses were characterized, and their cytocompatibility investigated, in pre-osteoblastic MC3T3-E1 cell cultures. The simultaneous additions of osteostatin and Zn2+ ions provoked enhanced MC3T3-E1 cell viability and a higher differentiation capacity, compared with either raw BL or MBGs supplemented only with osteostatin or Zn2+. These in vitro results show that osteostatin enhances the osteogenic effect of Zn2+-enriched glasses, suggesting the potential of this combined approach in bone tissue engineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA