Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 135: 3-12, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35365397

RESUMO

Chromatin, the functional organization of DNA with histone proteins in eukaryotic nuclei, is the tightly-regulated template for several biological processes, such as transcription, replication, DNA damage repair, chromosome stability and sister chromatid segregation. In order to achieve a reversible control of local chromatin structure and DNA accessibility, various interconnected mechanisms have evolved. One of such processes includes the deposition of functionally-diverse variants of histone proteins into nucleosomes, the building blocks of chromatin. Among core histones, the family of H2A histone variants exhibits the largest number of members and highest sequence-divergence. In this short review, we report and discuss recent discoveries concerning the biological functions of the animal histone variants H2A.B, H2A.X and H2A.Z and how dysregulation or mutation of the latter impacts the development of disease.


Assuntos
Histonas , Nucleossomos , Animais , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Cromatina/genética , Reparo do DNA/genética , DNA/genética
2.
J Gen Virol ; 98(2): 212-224, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28008821

RESUMO

The liver-specific microRNA-122 (miR-122) binds to two conserved binding sites in the 5' UTR of hepatitis C virus (HCV) RNA. This binding was reported to enhance HCV RNA replication, translation and stability. We have analysed binding of miR-122/Argonaute 2 (Ago2) complexes to these sites using anti-Ago2 co-immunoprecipitation of radioactively labelled HCV RNAs along with ectopic miR-122 in HeLa cells. Our results show that the miR-122 target sites can be addressed separately. When both target sites were addressed simultaneously, we observed a synergistic binding of both miR/Ago2 complexes. Consistently, simultaneous binding of both miR-122/Ago2 complexes results in cooperative translation stimulation. In the binding assays as well as in the translation assays, binding site 1 has a stronger effect than binding site 2. We also analysed the overall RNA stability as well as the 5' end integrity of these HCV RNAs in the presence of miR-122. Surprisingly, using short HCV reporter RNAs, we did not find effects of miR-122 binding on overall RNA stability or 5' end integrity over up to 36 h. In contrast, using full-length HCV genomes that are incapable of replication, we found a positive influence of miR-122 on RNA stability, indicating that features of the full-length HCV genome that do not reside in the 5' and 3' UTRs may render HCV RNA genome stability miR-122 dependent.


Assuntos
Regiões 5' não Traduzidas , Proteínas Argonautas/metabolismo , Hepacivirus/metabolismo , Hepatite C/metabolismo , Hepatite C/virologia , MicroRNAs/metabolismo , Estabilidade de RNA , RNA Viral/metabolismo , Proteínas Argonautas/genética , Sítios de Ligação , Genoma Viral , Células HeLa , Hepacivirus/genética , Humanos , Fígado/metabolismo , Fígado/virologia , MicroRNAs/genética , Biossíntese de Proteínas
3.
Nat Commun ; 14(1): 472, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709316

RESUMO

Specialized chromatin-binding proteins are required for DNA-based processes during development. We recently established PWWP2A as a direct histone variant H2A.Z interactor involved in mitosis and craniofacial development. Here, we identify the H2A.Z/PWWP2A-associated protein HMG20A as part of several chromatin-modifying complexes, including NuRD, and show that it localizes to distinct genomic regulatory regions. Hmg20a depletion causes severe head and heart developmental defects in Xenopus laevis. Our data indicate that craniofacial malformations are caused by defects in neural crest cell (NCC) migration and cartilage formation. These developmental failures are phenocopied in Hmg20a-depleted mESCs, which show inefficient differentiation into NCCs and cardiomyocytes (CM). Consequently, loss of HMG20A, which marks open promoters and enhancers, results in chromatin accessibility changes and a striking deregulation of transcription programs involved in epithelial-mesenchymal transition (EMT) and differentiation processes. Collectively, our findings implicate HMG20A as part of the H2A.Z/PWWP2A/NuRD-axis and reveal it as a key modulator of intricate developmental transcription programs that guide the differentiation of NCCs and CMs.


Assuntos
Cromatina , Histonas , Diferenciação Celular/genética , Cromatina/genética , Transição Epitelial-Mesenquimal , Histonas/genética , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Camundongos , Xenopus laevis
4.
Epigenetics Chromatin ; 12(1): 37, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31200754

RESUMO

The histone variant H2A.Z is involved in several processes such as transcriptional control, DNA repair, regulation of centromeric heterochromatin and, not surprisingly, is implicated in diseases such as cancer. Here, we review the recent developments on H2A.Z focusing on its role in transcriptional activation and repression. H2A.Z, as a replication-independent histone, has been studied in several model organisms and inducible mammalian model systems. Its loading machinery and several modifying enzymes have been recently identified, and some of the long-standing discrepancies in transcriptional activation and/or repression are about to be resolved. The buffering functions of H2A.Z, as supported by genome-wide localization and analyzed in several dynamic systems, are an excellent example of transcriptional control. Posttranslational modifications such as acetylation and ubiquitination of H2A.Z, as well as its specific binding partners, are in our view central players in the control of gene expression. Understanding the key-mechanisms in either turnover or stabilization of H2A.Z-containing nucleosomes as well as defining the H2A.Z interactome will pave the way for therapeutic applications in the future.


Assuntos
Regulação da Expressão Gênica , Histonas/genética , Acetilação , Adenosina Trifosfatases/metabolismo , Animais , Reparo do DNA , Heterocromatina , Histonas/metabolismo , Humanos , Nucleossomos , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Ativação Transcricional , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA