Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 621(7978): 381-388, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648849

RESUMO

Only recently have more specific circuit-probing techniques become available to inform previous reports implicating the rodent hippocampus in orexigenic appetitive processing1-4. This function has been reported to be mediated at least in part by lateral hypothalamic inputs, including those involving orexigenic lateral hypothalamic neuropeptides, such as melanin-concentrating hormone5,6. This circuit, however, remains elusive in humans. Here we combine tractography, intracranial electrophysiology, cortico-subcortical evoked potentials, and brain-clearing 3D histology to identify an orexigenic circuit involving the lateral hypothalamus and converging in a hippocampal subregion. We found that low-frequency power is modulated by sweet-fat food cues, and this modulation was specific to the dorsolateral hippocampus. Structural and functional analyses of this circuit in a human cohort exhibiting dysregulated eating behaviour revealed connectivity that was inversely related to body mass index. Collectively, this multimodal approach describes an orexigenic subnetwork within the human hippocampus implicated in obesity and related eating disorders.


Assuntos
Hipocampo , Vias Neurais , Orexinas , Humanos , Índice de Massa Corporal , Estudos de Coortes , Sinais (Psicologia) , Eletrofisiologia , Potenciais Evocados/fisiologia , Transtornos da Alimentação e da Ingestão de Alimentos/metabolismo , Comportamento Alimentar , Alimentos , Hipocampo/anatomia & histologia , Hipocampo/citologia , Hipocampo/metabolismo , Obesidade/metabolismo , Orexinas/metabolismo
2.
J Neurosci ; 43(24): 4434-4447, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37188514

RESUMO

The human ventral temporal cortex (VTC) is highly connected to integrate visual perceptual inputs with feedback from cognitive and emotional networks. In this study, we used electrical brain stimulation to understand how different inputs from multiple brain regions drive unique electrophysiological responses in the VTC. We recorded intracranial EEG data in 5 patients (3 female) implanted with intracranial electrodes for epilepsy surgery evaluation. Pairs of electrodes were stimulated with single-pulse electrical stimulation, and corticocortical evoked potential responses were measured at electrodes in the collateral sulcus and lateral occipitotemporal sulcus of the VTC. Using a novel unsupervised machine learning method, we uncovered 2-4 distinct response shapes, termed basis profile curves (BPCs), at each measurement electrode in the 11-500 ms after stimulation interval. Corticocortical evoked potentials of unique shape and high amplitude were elicited following stimulation of several regions and classified into a set of four consensus BPCs across subjects. One of the consensus BPCs was primarily elicited by stimulation of the hippocampus; another by stimulation of the amygdala; a third by stimulation of lateral cortical sites, such as the middle temporal gyrus; and the final one by stimulation of multiple distributed sites. Stimulation also produced sustained high-frequency power decreases and low-frequency power increases that spanned multiple BPC categories. Characterizing distinct shapes in stimulation responses provides a novel description of connectivity to the VTC and reveals significant differences in input from cortical and limbic structures.SIGNIFICANCE STATEMENT Disentangling the numerous input influences on highly connected areas in the brain is a critical step toward understanding how brain networks work together to coordinate human behavior. Single-pulse electrical stimulation is an effective tool to accomplish this goal because the shapes and amplitudes of signals recorded from electrodes are informative of the synaptic physiology of the stimulation-driven inputs. We focused on targets in the ventral temporal cortex, an area strongly implicated in visual object perception. By using a data-driven clustering algorithm, we identified anatomic regions with distinct input connectivity profiles to the ventral temporal cortex. Examining high-frequency power changes revealed possible modulation of excitability at the recording site induced by electrical stimulation of connected regions.


Assuntos
Córtex Cerebral , Lobo Temporal , Humanos , Feminino , Lobo Temporal/fisiologia , Potenciais Evocados/fisiologia , Hipocampo , Mapeamento Encefálico/métodos , Estimulação Elétrica/métodos
3.
J Neurosci ; 43(39): 6697-6711, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37620159

RESUMO

Stimulation-evoked signals are starting to be used as biomarkers to indicate the state and health of brain networks. The human limbic network, often targeted for brain stimulation therapy, is involved in emotion and memory processing. Previous anatomic, neurophysiological, and functional studies suggest distinct subsystems within the limbic network (Rolls, 2015). Studies using intracranial electrical stimulation, however, have emphasized the similarities of the evoked waveforms across the limbic network. We test whether these subsystems have distinct stimulation-driven signatures. In eight patients (four male, four female) with drug-resistant epilepsy, we stimulated the limbic system with single-pulse electrical stimulation. Reliable corticocortical evoked potentials (CCEPs) were measured between hippocampus and the posterior cingulate cortex (PCC) and between the amygdala and the anterior cingulate cortex (ACC). However, the CCEP waveform in the PCC after hippocampal stimulation showed a unique and reliable morphology, which we term the "limbic Hippocampus-Anterior nucleus of the thalamus-Posterior cingulate, HAP-wave." This limbic HAP-wave was visually distinct and separately decoded from the CCEP waveform in ACC after amygdala stimulation. Diffusion MRI data show that the measured end points in the PCC overlap with the end points of the parolfactory cingulum bundle rather than the parahippocampal cingulum, suggesting that the limbic HAP-wave may travel through fornix, mammillary bodies, and the anterior nucleus of the thalamus (ANT). This was further confirmed by stimulating the ANT, which evoked the same limbic HAP-wave but with an earlier latency. Limbic subsystems have unique stimulation-evoked signatures that may be used in the future to help network pathology diagnosis.SIGNIFICANCE STATEMENT The limbic system is often compromised in diverse clinical conditions, such as epilepsy or Alzheimer's disease, and characterizing its typical circuit responses may provide diagnostic insight. Stimulation-evoked waveforms have been used in the motor system to diagnose circuit pathology. We translate this framework to limbic subsystems using human intracranial stereo EEG (sEEG) recordings that measure deeper brain areas. Our sEEG recordings describe a stimulation-evoked waveform characteristic to the memory and spatial subsystem of the limbic network that we term the "limbic HAP-wave." The limbic HAP-wave follows anatomic white matter pathways from hippocampus to thalamus to the posterior cingulum and shows promise as a distinct biomarker of signaling in the human brain memory and spatial limbic network.


Assuntos
Núcleos Anteriores do Tálamo , Epilepsia , Humanos , Masculino , Feminino , Sistema Límbico/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Estimulação Elétrica
4.
J Neurosci ; 43(39): 6653-6666, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37620157

RESUMO

The impedance is a fundamental electrical property of brain tissue, playing a crucial role in shaping the characteristics of local field potentials, the extent of ephaptic coupling, and the volume of tissue activated by externally applied electrical brain stimulation. We tracked brain impedance, sleep-wake behavioral state, and epileptiform activity in five people with epilepsy living in their natural environment using an investigational device. The study identified impedance oscillations that span hours to weeks in the amygdala, hippocampus, and anterior nucleus thalamus. The impedance in these limbic brain regions exhibit multiscale cycles with ultradian (∼1.5-1.7 h), circadian (∼21.6-26.4 h), and infradian (∼20-33 d) periods. The ultradian and circadian period cycles are driven by sleep-wake state transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Limbic brain tissue impedance reaches a minimum value in NREM sleep, intermediate values in REM sleep, and rises through the day during wakefulness, reaching a maximum in the early evening before sleep onset. Infradian (∼20-33 d) impedance cycles were not associated with a distinct behavioral correlate. Brain tissue impedance is known to strongly depend on the extracellular space (ECS) volume, and the findings reported here are consistent with sleep-wake-dependent ECS volume changes recently observed in the rodent cortex related to the brain glymphatic system. We hypothesize that human limbic brain ECS changes during sleep-wake state transitions underlie the observed multiscale impedance cycles. Impedance is a simple electrophysiological biomarker that could prove useful for tracking ECS dynamics in human health, disease, and therapy.SIGNIFICANCE STATEMENT The electrical impedance in limbic brain structures (amygdala, hippocampus, anterior nucleus thalamus) is shown to exhibit oscillations over multiple timescales. We observe that impedance oscillations with ultradian and circadian periodicities are associated with transitions between wakefulness, NREM, and REM sleep states. There are also impedance oscillations spanning multiple weeks that do not have a clear behavioral correlate and whose origin remains unclear. These multiscale impedance oscillations will have an impact on extracellular ionic currents that give rise to local field potentials, ephaptic coupling, and the tissue activated by electrical brain stimulation. The approach for measuring tissue impedance using perturbational electrical currents is an established engineering technique that may be useful for tracking ECS volume.


Assuntos
Sono REM , Sono , Humanos , Impedância Elétrica , Sono/fisiologia , Sono REM/fisiologia , Encéfalo/fisiologia , Vigília/fisiologia , Hipocampo
5.
PLoS Comput Biol ; 19(5): e1011105, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37228169

RESUMO

Single-pulse electrical stimulation in the nervous system, often called cortico-cortical evoked potential (CCEP) measurement, is an important technique to understand how brain regions interact with one another. Voltages are measured from implanted electrodes in one brain area while stimulating another with brief current impulses separated by several seconds. Historically, researchers have tried to understand the significance of evoked voltage polyphasic deflections by visual inspection, but no general-purpose tool has emerged to understand their shapes or describe them mathematically. We describe and illustrate a new technique to parameterize brain stimulation data, where voltage response traces are projected into one another using a semi-normalized dot product. The length of timepoints from stimulation included in the dot product is varied to obtain a temporal profile of structural significance, and the peak of the profile uniquely identifies the duration of the response. Using linear kernel PCA, a canonical response shape is obtained over this duration, and then single-trial traces are parameterized as a projection of this canonical shape with a residual term. Such parameterization allows for dissimilar trace shapes from different brain areas to be directly compared by quantifying cross-projection magnitudes, response duration, canonical shape projection amplitudes, signal-to-noise ratios, explained variance, and statistical significance. Artifactual trials are automatically identified by outliers in sub-distributions of cross-projection magnitude, and rejected. This technique, which we call "Canonical Response Parameterization" (CRP) dramatically simplifies the study of CCEP shapes, and may also be applied in a wide range of other settings involving event-triggered data.


Assuntos
Encéfalo , Potenciais Evocados , Potenciais Evocados/fisiologia , Mapeamento Encefálico/métodos , Eletrodos Implantados , Estimulação Elétrica/métodos
6.
Hum Brain Mapp ; 44(1): 280-294, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308417

RESUMO

Blood and cerebrospinal fluid (CSF) pulse and flow throughout the brain, driven by the cardiac cycle. These fluid dynamics, which are essential to healthy brain function, are characterized by several noninvasive magnetic resonance imaging (MRI) methods. Recent developments in fast MRI, specifically simultaneous multislice acquisition methods, provide a new opportunity to rapidly and broadly assess cardiac-driven flow, including CSF spaces, surface vessels and parenchymal vessels. We use these techniques to assess blood and CSF flow dynamics in brief (3.5 min) scans on a conventional 3 T MRI scanner in five subjects. Cardiac pulses are measured with a photoplethysmography (PPG) on the index finger, along with functional MRI (fMRI) signals in the brain. We, retrospectively, align the fMRI signals to the heartbeat. Highly reliable cardiac-gated fMRI temporal signals are observed in CSF and blood on the timescale of one heartbeat (test-retest reliability within subjects R2  > 50%). In blood vessels, a local minimum is observed following systole. In CSF spaces, the ventricles and subarachnoid spaces have a local maximum following systole instead. Slower resting-state scans with slice timing, retrospectively, aligned to the cardiac pulse, reveal similar cardiac-gated responses. The cardiac-gated measurements estimate the amplitude and phase of fMRI pulsations in the CSF relative to those in the arteries, an estimate of the local intracranial impedance. Cardiac aligned fMRI signals can provide new insights about fluid dynamics or diagnostics for diseases where these dynamics are important.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem
7.
Neuroimage ; 260: 119438, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792291

RESUMO

Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.


Assuntos
Eletrocorticografia , Eletroencefalografia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Eletrocorticografia/métodos , Eletrodos , Eletroencefalografia/métodos , Humanos
8.
PLoS Comput Biol ; 17(9): e1008710, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473701

RESUMO

Brain networks can be explored by delivering brief pulses of electrical current in one area while measuring voltage responses in other areas. We propose a convergent paradigm to study brain dynamics, focusing on a single brain site to observe the average effect of stimulating each of many other brain sites. Viewed in this manner, visually-apparent motifs in the temporal response shape emerge from adjacent stimulation sites. This work constructs and illustrates a data-driven approach to determine characteristic spatiotemporal structure in these response shapes, summarized by a set of unique "basis profile curves" (BPCs). Each BPC may be mapped back to underlying anatomy in a natural way, quantifying projection strength from each stimulation site using simple metrics. Our technique is demonstrated for an array of implanted brain surface electrodes in a human patient. This framework enables straightforward interpretation of single-pulse brain stimulation data, and can be applied generically to explore the diverse milieu of interactions that comprise the connectome.


Assuntos
Encéfalo/fisiologia , Conectoma , Estimulação Elétrica/métodos , Eletrodos Implantados , Eletroencefalografia , Potenciais Evocados , Humanos , Magnetoencefalografia
9.
Neuroimage ; 242: 118459, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371189

RESUMO

Electrocorticography (ECoG) is typically employed to accurately identify the seizure focus as well as the location of brain functions to be spared during surgical resection in participants with drug-resistant epilepsy. Increasingly, this technique has become a powerful tool to map cognitive functions onto brain regions. Cortical mapping is more commonly investigated with functional MRI (fMRI), which measures blood-oxygen level dependent (BOLD) changes induced by neuronal activity. The multimodal integration between typical 3T fMRI activity maps and ECoG measurements can provide unique insight into the spatiotemporal aspects of cognition. However, the optimal integration of fMRI and ECoG requires fundamental insight into the spatial smoothness of the BOLD signal under each electrode. Here we use ECoG as ground truth for the extent of activity, as each electrode is thought to record from the cortical tissue directly underneath the contact, to estimate the spatial smoothness of the associated BOLD response at 3T fMRI. We compared the high-frequency broadband (HFB) activity recorded with ECoG while participants performed a motor task. Activity maps were obtained with fMRI at 3T for the same task in the same participant prior to surgery. We then correlated HFB power with the fMRI BOLD signal change in the area around each electrode. This latter measure was quantified by applying a 3D Gaussian kernel of varying width (sigma between 1 mm and 20 mm) to the fMRI maps including only gray-matter. We found that the correlation between HFB and BOLD activity increased sharply up to the point when the kernel width was set to 4 mm, which we defined as the kernel width of maximal spatial specificity. After this point, as the kernel width increased, the highest level of explained variance was reached at a kernel width of 9 mm for most participants. Intriguingly, maximal specificity was also limited to 4 mm for low-frequency bands, such as alpha and beta, but the kernel width with the highest explained variance was less spatially limited than the HFB. In summary, spatial specificity is limited to a kernel width of 4 mm but explained variance keeps on increasing as you average over more and more voxels containing the relatively noisy BOLD signal. Future multimodal studies should choose the kernel width based on their research goal. For maximal spatial specificity, ECoG electrodes are best compared to 3T fMRI with a kernel width of 4 mm. When optimizing the correlation between modalities, highest explained variance can be obtained at larger kernel widths of 9 mm, at the expense of spatial specificity. Finally, we release the complete pipeline so that researchers can estimate the most appropriate kernel width from their multimodal datasets.


Assuntos
Eletrocorticografia/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Motor/diagnóstico por imagem , Adolescente , Adulto , Mapeamento Encefálico/métodos , Criança , Eletrodos Implantados , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Adulto Jovem
10.
PLoS Biol ; 15(7): e2001461, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28742093

RESUMO

The most widespread measures of human brain activity are the blood-oxygen-level dependent (BOLD) signal and surface field potential. Prior studies report a variety of relationships between these signals. To develop an understanding of how to interpret these signals and the relationship between them, we developed a model of (a) neuronal population responses and (b) transformations from neuronal responses into the functional magnetic resonance imaging (fMRI) BOLD signal and electrocorticographic (ECoG) field potential. Rather than seeking a transformation between the two measures directly, this approach interprets each measure with respect to the underlying neuronal population responses. This model accounts for the relationship between BOLD and ECoG data from human visual cortex in V1, V2, and V3, with the model predictions and data matching in three ways: across stimuli, the BOLD amplitude and ECoG broadband power were positively correlated, the BOLD amplitude and alpha power (8-13 Hz) were negatively correlated, and the BOLD amplitude and narrowband gamma power (30-80 Hz) were uncorrelated. The two measures provide complementary information about human brain activity, and we infer that features of the field potential that are uncorrelated with BOLD arise largely from changes in synchrony, rather than level, of neuronal activity.


Assuntos
Sincronização Cortical , Hipóxia Encefálica/etiologia , Modelos Neurológicos , Potenciais Sinápticos , Córtex Visual/diagnóstico por imagem , Adulto , Algoritmos , Monitorização Transcutânea dos Gases Sanguíneos , Simulação por Computador , Eletrocorticografia , Feminino , Neuroimagem Funcional , Humanos , Hipóxia Encefálica/sangue , Imageamento por Ressonância Magnética , Masculino , Neurônios/metabolismo , Oxigênio/sangue , Análise de Componente Principal , Reprodutibilidade dos Testes , Córtex Visual/irrigação sanguínea , Córtex Visual/metabolismo , Adulto Jovem
11.
Neurosurg Focus ; 49(1): E2, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32610290

RESUMO

Brain-computer interfaces (BCIs) provide a way for the brain to interface directly with a computer. Many different brain signals can be used to control a device, varying in ease of recording, reliability, stability, temporal and spatial resolution, and noise. Electrocorticography (ECoG) electrodes provide a highly reliable signal from the human brain surface, and these signals have been used to decode movements, vision, and speech. ECoG-based BCIs are being developed to provide increased options for treatment and assistive devices for patients who have functional limitations. Decoding ECoG signals in real time provides direct feedback to the patient and can be used to control a cursor on a computer or an exoskeleton. In this review, the authors describe the current state of ECoG-based BCIs that are approaching clinical viability for restoring lost communication and motor function in patients with amyotrophic lateral sclerosis or tetraplegia. These studies provide a proof of principle and the possibility that ECoG-based BCI technology may also be useful in the future for assisting in the cortical rehabilitation of patients who have suffered a stroke.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiopatologia , Eletroencefalografia , Quadriplegia/fisiopatologia , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/reabilitação , Eletroencefalografia/métodos , Exoesqueleto Energizado , Humanos , Fala/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral
12.
Cereb Cortex ; 27(1): 567-575, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26503267

RESUMO

Recent evidence suggests that specific neuronal populations in the ventral temporal cortex show larger electrophysiological responses to visual numerals compared with morphologically similar stimuli. This study investigates how these responses change from simple reading of numerals to the active use of numerals in an arithmetic context. We recorded high-frequency broadband (HFB) signals, a reliable measure for local neuronal population activity, while 10 epilepsy patients implanted with subdural electrodes performed separate numeral reading and calculation tasks. We found that calculation increased activity in the posterior inferior temporal gyrus (ITG) with a factor of approximately 1.5 over the first 500 ms of calculation, whereas no such increase was noted for reading numerals without calculation or reading and judging memory statements. In a second experiment conducted in 2 of the same subjects, we show that HFB responses increase in a systematic manner when the single numerals were presented successively in a calculation context: The HFB response in the ITG, to the second and third numerals (i.e., b and c in a + b = c), was approximately 1.5 times larger than the responses to the first numeral (a). These results provide electrophysiological evidence for modulation of local neuronal population responses to visual stimuli based on increasing task demands.


Assuntos
Conceitos Matemáticos , Reconhecimento Visual de Modelos/fisiologia , Resolução de Problemas/fisiologia , Leitura , Lobo Temporal/fisiologia , Adulto , Eletrocorticografia , Epilepsia/fisiopatologia , Feminino , Humanos , Julgamento/fisiologia , Masculino , Memória/fisiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Processamento de Sinais Assistido por Computador , Lobo Temporal/fisiopatologia , Adulto Jovem
13.
J Neurophysiol ; 118(5): 2614-2627, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814631

RESUMO

Loci in ventral temporal cortex are selectively active during viewing of faces and other objects, but it remains unclear whether these areas represent accumulation of simple visual information or processing of intact percept. We measured broadband electrocorticographic changes from implanted electrodes on the ventral temporal brain surface while showing patients noise-degraded images of faces and houses. In a subset of posterior fusiform gyrus face-selective regions, cortical activity decreased parametrically with noise increase, until the perceptual threshold was surpassed. At noise levels higher than the perceptual threshold, and for house stimuli, activity remained at baseline. We propose that this convergence of proportional and thresholded response may identify active areas where face percepts are extracted from simple visual features. These loci exist within a topological structure of face percept formation in the human ventral visual stream, preceded by category-nonselective activity in pericalcarine early visual areas and in concert with all-or-nothing activity in postperceptual subregions of the ventral temporal lobe. This topological organization suggests a physiological basis for the anatomy of face perception, explaining different perceptual deficits following temporal lobe injury.NEW & NOTEWORTHY Philosophers have puzzled for millennia about how humans build abstract conceptual objects (house/face/tool) from the simple features of the world they see around them (line/patch/lighting). Understanding the biological foundation of this process requires detailed knowledge of the spatial-temporal characteristics of cerebral cortex. By examining the physiology of the human temporal lobe via implanted electrodes while showing subjects noise-degraded images, we find that face percept formation happens in specific subregions within known face-processing areas.


Assuntos
Reconhecimento Facial , Lobo Temporal/fisiologia , Potenciais Evocados Visuais , Feminino , Humanos , Masculino , Limiar Sensorial , Razão Sinal-Ruído
14.
PLoS Comput Biol ; 12(1): e1004660, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26820899

RESUMO

The link between object perception and neural activity in visual cortical areas is a problem of fundamental importance in neuroscience. Here we show that electrical potentials from the ventral temporal cortical surface in humans contain sufficient information for spontaneous and near-instantaneous identification of a subject's perceptual state. Electrocorticographic (ECoG) arrays were placed on the subtemporal cortical surface of seven epilepsy patients. Grayscale images of faces and houses were displayed rapidly in random sequence. We developed a template projection approach to decode the continuous ECoG data stream spontaneously, predicting the occurrence, timing and type of visual stimulus. In this setting, we evaluated the independent and joint use of two well-studied features of brain signals, broadband changes in the frequency power spectrum of the potential and deflections in the raw potential trace (event-related potential; ERP). Our ability to predict both the timing of stimulus onset and the type of image was best when we used a combination of both the broadband response and ERP, suggesting that they capture different and complementary aspects of the subject's perceptual state. Specifically, we were able to predict the timing and type of 96% of all stimuli, with less than 5% false positive rate and a ~20ms error in timing.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Biologia Computacional , Epilepsia/fisiopatologia , Humanos , Processamento de Sinais Assistido por Computador
15.
J Neurosci ; 34(38): 12828-36, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232118

RESUMO

Neuroimaging and electrophysiological studies across species have confirmed bilateral face-selective responses in the ventral temporal cortex (VTC) and prosopagnosia is reported in patients with lesions in the VTC including the fusiform gyrus (FG). As imaging and electrophysiological studies provide correlative evidence, and brain lesions often comprise both white and gray matter structures beyond the FG, we designed the current study to explore the link between face-related electrophysiological responses in the FG and the causal effects of electrical stimulation of the left or right FG in face perception. We used a combination of electrocorticography (ECoG) and electrical brain stimulation (EBS) in 10 human subjects implanted with intracranial electrodes in either the left (5 participants, 30 FG sites) or right (5 participants, 26 FG sites) hemispheres. We identified FG sites with face-selective ECoG responses, and recorded perceptual reports during EBS of these sites. In line with existing literature, face-selective ECoG responses were present in both left and right FG sites. However, when the same sites were stimulated, we observed a striking difference between hemispheres. Only EBS of the right FG caused changes in the conscious perception of faces, whereas EBS of strongly face-selective regions in the left FG produced non-face-related visual changes, such as phosphenes. This study examines the relationship between correlative versus causal nature of ECoG and EBS, respectively, and provides important insight into the differential roles of the right versus left FG in conscious face perception.


Assuntos
Face , Lateralidade Funcional/fisiologia , Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Estimulação Elétrica , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa
16.
J Neurophysiol ; 114(1): 256-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25972581

RESUMO

The human ventral temporal cortex has regions that are known to selectively process certain categories of visual inputs; they are specialized for the content ("faces," "places," "tools") and not the form ("line," "patch") of the image being seen. In our study, human patients with implanted electrocorticography (ECoG) electrode arrays were shown sequences of simple face and house pictures. We quantified neuronal population activity, finding robust face-selective sites on the fusiform gyrus and house-selective sites on the lingual/parahippocampal gyri. The magnitude and timing of single trials were compared between novel ("house-face") and repeated ("face-face") stimulus-type responses. More than half of the category-selective sites showed significantly greater total activity for novel stimulus class. Approximately half of the face-selective sites (and none of the house-selective sites) showed significantly faster latency to peak (∼ 50 ms) for novel stimulus class. This establishes subregions within category-selective areas that are differentially tuned to novelty in sequential context, where novel stimuli are processed faster in some regions, and with increased activity in others.


Assuntos
Lobo Temporal/fisiologia , Percepção Visual/fisiologia , Eletrocorticografia , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Face , Reconhecimento Facial/fisiologia , Habitação , Humanos , Testes Neuropsicológicos , Estimulação Luminosa
17.
Proc Natl Acad Sci U S A ; 109(45): 18583-8, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23091013

RESUMO

The learning of a motor task is known to be improved by sleep, and sleep spindles are thought to facilitate this learning by enabling synaptic plasticity. In this study subjects implanted with electrocorticography (ECoG) arrays for long-term epilepsy monitoring were trained to control a cursor on a computer screen by modulating either the high-gamma or mu/beta power at a single electrode located over the motor or premotor area. In all trained subjects, spindle density in posttraining sleep was increased with respect to pretraining sleep in a remarkably spatially specific manner. The pattern of increased spindle activity reflects the functionally specific regions that were involved in learning of a highly novel and salient task during wakefulness, supporting the idea that sleep spindles are involved in learning to use a motor-based brain-computer interface device.


Assuntos
Interfaces Cérebro-Computador , Sono/fisiologia , Adolescente , Adulto , Análise por Conglomerados , Eletrodos , Feminino , Humanos , Masculino , Adulto Jovem
18.
J Neurosci ; 33(16): 6709-15, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23595729

RESUMO

Is there a distinct area within the human visual system that has a preferential response to numerals, as there is for faces, words, or scenes? We addressed this question using intracranial electrophysiological recordings and observed a significantly higher response in the high-frequency broadband range (high γ, 65-150 Hz) to visually presented numerals, compared with morphologically similar (i.e., letters and false fonts) or semantically and phonologically similar stimuli (i.e., number words and non-number words). Anatomically, this preferential response was consistently localized in the inferior temporal gyrus and anterior to the temporo-occipital incisure. This region lies within or close to the fMRI signal-dropout zone produced by the nearby auditory canal and venous sinus artifacts, an observation that may account for negative findings in previous fMRI studies of preferential response to numerals. Because visual numerals are culturally dependent symbols that are only learned through education, our novel finding of anatomically localized preferential response to such symbols provides a new example of acquired category-specific responses in the human visual system.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Matemática , Reconhecimento Visual de Modelos/fisiologia , Adulto , Encéfalo/irrigação sanguínea , Eletrodos , Eletroencefalografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Estimulação Luminosa , Tempo de Reação/fisiologia , Vias Visuais/irrigação sanguínea , Vias Visuais/fisiologia , Vocabulário , Adulto Jovem
19.
Neuroimage ; 85 Pt 2: 711-20, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24018305

RESUMO

We illustrate a general principal of electrical potential measurements from the surface of the cerebral cortex, by revisiting and reanalyzing experimental work from the visual, language and motor systems. A naive decomposition technique of electrocorticographic power spectral measurements reveals that broadband spectral changes reliably track task engagement. These broadband changes are shown to be a generic correlate of local cortical function across a variety of brain areas and behavioral tasks. Furthermore, they fit a power-law form that is consistent with simple models of the dendritic integration of asynchronous local population firing. Because broadband spectral changes covary with diverse perceptual and behavioral states on the timescale of 20-50 ms, they provide a powerful and widely applicable experimental tool.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Interpretação Estatística de Dados , Eletroencefalografia , Humanos , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia
20.
Neuroimage ; 101: 177-84, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25026157

RESUMO

High resolution BOLD fMRI has the potential to map activation patterns of small neuronal populations at the scale of cortical columns. However, BOLD fMRI does not measure neuronal activity, but only a correlate thereof, since it measures blood dynamics. To confirm that BOLD activation maps reflect neuronal population activity patterns, a direct comparison with neuro-electrophysiological data from the same cortical patch is necessary. Here, we compare BOLD activation patterns obtained with fMRI at 7 T to electrophysiological patterns obtained with implanted high density electrocorticography (ECoG) grids in the same patch of human sensorimotor cortex, and with similar resolution (1.5mm). We used high spatially sampled high-frequency broadband (HFB) power from ECoG, which reflects local neuronal population activity. The spatial distribution of 7 T BOLD activation matched the spatial distribution of ECoG HFB-power changes in the covered patch of sensorimotor cortex. BOLD fMRI activation foci were located within 1-3mm of the HFB-power ECoG foci. Both methods distinguished individual finger movement activation within a 1cm cortical patch, revealing a topographical medial to lateral layout for the little finger to index to thumb. These findings demonstrate that the BOLD signal at 7 T is strongly correlated with the underlying electrophysiology, and is capable of discriminating patterns of neuronal population activity at a millimeter scale. The results further indicate the utility of 7 T fMRI for investigation of intra-area organization of function and network dynamics.


Assuntos
Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Córtex Sensório-Motor/fisiologia , Adulto , Eletrodos Implantados , Dedos/fisiologia , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA