Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Circ Res ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279670

RESUMO

RATIONALE: Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder caused by sarcomeric gene variants and associated with left ventricular hypertrophy and diastolic dysfunction. The role of the microtubule network has recently gained interest with the findings that microtubule detyrosination (dTyr-MT) is markedly elevated in heart failure. Acute reduction of dTyr-MT by inhibition of the detyrosinase (VASH [vasohibin]/SVBP [small VASH-binding protein] complex) or activation of the tyrosinase (TTL [tubulin tyrosine ligase]) markedly improved contractility and reduced stiffness in human failing cardiomyocytes and thus posed a new perspective for HCM treatment. OBJECTIVE: In this study, we tested the impact of chronic tubulin tyrosination in an HCM mouse model (Mybpc3 knock in), in human HCM cardiomyocytes, and in SVBP-deficient human engineered heart tissues (EHTs). METHODS AND RESULTS: Adeno-associated virus serotype 9-mediated TTL transfer was applied in neonatal wild-type rodents, in 3-week-old knock-in mice, and in HCM human induced pluripotent stem cell-derived cardiomyocytes. We show (1) TTL for 6 weeks dose dependently reduced dTyr-MT and improved contractility without affecting cytosolic calcium transients in wild-type cardiomyocytes; (2) TTL for 12 weeks reduced the abundance of dTyr-MT in the myocardium, improved diastolic filling, compliance, cardiac output, and stroke volume in knock-in mice; (3) TTL for 10 days normalized cell area in HCM human induced pluripotent stem cell-derived cardiomyocytes; (4) TTL overexpression activated transcription of tubulins and other cytoskeleton components but did not significantly impact the proteome in knock-in mice; (5) SVBP-deficient EHTs exhibited reduced dTyr-MT levels, higher force, and faster relaxation than TTL-deficient and wild-type EHTs. RNA sequencing and mass spectrometry analysis revealed distinct enrichment of cardiomyocyte components and pathways in SVBP-deficient versus TTL-deficient EHTs. CONCLUSIONS: This study provides the first proof of concept that chronic activation of tubulin tyrosination in HCM mice and in human EHTs improves heart function and holds promise for targeting the nonsarcomeric cytoskeleton in heart disease.

2.
Mol Psychiatry ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112778

RESUMO

Resilience is the capacity to adapt to stressful life events. As such, this trait is associated with physical and mental functions and conditions. Here, we aimed to identify the genetic factors contributing to shape resilience. We performed variant- and gene-based meta-analyses of genome-wide association studies from six German cohorts (N = 15822) using the 11-item version of the Resilience Scale (RS-11) as outcome measure. Variant- and gene-level results were combined to explore the biological context using network analysis. In addition, we conducted tests of correlation between RS-11 and the polygenic scores (PGSs) for 12 personality and mental health traits in one of these cohorts (PROCAM-2, N = 3879). The variant-based analysis found no signals associated with resilience at the genome-wide level (p < 5 × 10-8), but suggested five genomic loci (p < 1 × 10-5). The gene-based analysis identified three genes (ROBO1, CIB3 and LYPD4) associated with resilience at genome-wide level (p < 2.48 × 10-6) and 32 potential candidates (p < 1 × 10-4). Network analysis revealed enrichment of biological pathways related to neuronal proliferation and differentiation, synaptic organization, immune responses and vascular homeostasis. We also found significant correlations (FDR < 0.05) between RS-11 and the PGSs for neuroticism and general happiness. Overall, our observations suggest low heritability of resilience. Large, international efforts will be required to uncover the genetic factors that contribute to shape trait resilience. Nevertheless, as the largest investigation of the genetics of resilience in general population to date, our study already offers valuable insights into the biology potentially underlying resilience and resilience's relationship with other personality traits and mental health.

3.
Brain ; 146(3): 977-990, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35348614

RESUMO

Autoimmune neurological syndromes (AINS) with autoantibodies against the 65 kDa isoform of the glutamic acid decarboxylase (GAD65) present with limbic encephalitis, including temporal lobe seizures or epilepsy, cerebellitis with ataxia, and stiff-person-syndrome or overlap forms. Anti-GAD65 autoantibodies are also detected in autoimmune diabetes mellitus, which has a strong genetic susceptibility conferred by human leukocyte antigen (HLA) and non-HLA genomic regions. We investigated the genetic predisposition in patients with anti-GAD65 AINS. We performed a genome-wide association study (GWAS) and an association analysis of the HLA region in a large German cohort of 1214 individuals. These included 167 patients with anti-GAD65 AINS, recruited by the German Network for Research on Autoimmune Encephalitis (GENERATE), and 1047 individuals without neurological or endocrine disease as population-based controls. Predictions of protein expression changes based on GWAS findings were further explored and validated in the CSF proteome of a virtually independent cohort of 10 patients with GAD65-AINS and 10 controls. Our GWAS identified 16 genome-wide significant (P < 5 × 10-8) loci for the susceptibility to anti-GAD65 AINS. The top variant, rs2535288 [P = 4.42 × 10-16, odds ratio (OR) = 0.26, 95% confidence interval (CI) = 0.187-0.358], localized to an intergenic segment in the middle of the HLA class I region. The great majority of variants in these loci (>90%) mapped to non-coding regions of the genome. Over 40% of the variants have known regulatory functions on the expression of 48 genes in disease relevant cells and tissues, mainly CD4+ T cells and the cerebral cortex. The annotation of epigenomic marks suggested specificity for neural and immune cells. A network analysis of the implicated protein-coding genes highlighted the role of protein kinase C beta (PRKCB) and identified an enrichment of numerous biological pathways participating in immunity and neural function. Analysis of the classical HLA alleles and haplotypes showed no genome-wide significant associations. The strongest associations were found for the DQA1*03:01-DQB1*03:02-DRB1*04:01HLA haplotype (P = 4.39 × 10-4, OR = 2.5, 95%CI = 1.499-4.157) and DRB1*04:01 allele (P = 8.3 × 10-5, OR = 2.4, 95%CI = 1.548-3.682) identified in our cohort. As predicted, the CSF proteome showed differential levels of five proteins (HLA-A/B, C4A, ATG4D and NEO1) of expression quantitative trait loci genes from our GWAS in the CSF proteome of anti-GAD65 AINS. These findings suggest a strong genetic predisposition with direct functional implications for immunity and neural function in anti-GAD65 AINS, mainly conferred by genomic regions outside the classical HLA alleles.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Predisposição Genética para Doença/genética , Proteoma/genética , Antígenos de Histocompatibilidade Classe II , Antígenos HLA , Haplótipos , Alelos , Autoanticorpos , Cadeias HLA-DRB1/genética
4.
Genomics ; 114(2): 110320, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35218871

RESUMO

It is believed that the atria play a predominant role in the initiation and maintenance of atrial fibrillation (AF), while the role of left ventricular dysfunction in the pathophysiology remains enigmatic. We sought to dissect chamber specificity of AF-associated transcriptional changes using RNA-sequencing. We performed intra- and inter-chamber differential expression analyses comparing AF against sinus rhythm to identify genes specifically dysregulated in human left atria, right atria, and left ventricle (LV), and integrated known AF genetic associations with expression quantitative trait loci datasets to inform the potential for disease causal contributions within each chamber. Inter-chamber patterns changed drastically. Vast AF-associated transcriptional changes specific to LV, enriched for biological pathway terms implicating mitochondrial function, developmental processes and immunity, were supported at the genetic level, but no major enrichments for candidate genes specific to the atria were found. Our observations suggest an active role of the LV in the pathogenesis of AF.


Assuntos
Fibrilação Atrial , Fibrilação Atrial/complicações , Fibrilação Atrial/genética , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Ventrículos do Coração/metabolismo , Humanos
5.
BMC Dermatol ; 20(1): 16, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33167971

RESUMO

BACKGROUND: The association of molecular phenotypes, such as gene transcript levels, with human common genetic variation can help to improve our understanding of interindividual variability of tissue-specific gene regulation and its implications for disease. METHODS: With the aim to capture the spectrum of biological processes affected by regulatory common genetic variants (minor allele frequency ≥ 1%) in healthy hair follicles (HFs) from scalp tissue, we performed a genome-wide mapping of cis-acting expression quantitative trait loci (eQTLs) in plucked HFs, and applied these eQTLs to help further explain genomic findings for hair-related traits. RESULTS: We report 374 high-confidence eQTLs found in occipital scalp tissue, whose associated genes (eGenes) showed enrichments for metabolic, mitotic and immune processes, as well as responses to steroid hormones. We were able to replicate 68 of these associations in a smaller, independent dataset, in either frontal and/or occipital scalp tissue. Furthermore, we found three genomic regions overlapping reported genetic loci for hair shape and hair color. We found evidence to confirm the contributions of PADI3 to human variation in hair traits and suggest a novel potential candidate gene within known loci for androgenetic alopecia. CONCLUSIONS: Our study shows that an array of basic cellular functions relevant for hair growth are genetically regulated within the HF, and can be applied to aid the interpretation of interindividual variability on hair traits, as well as genetic findings for common hair disorders.


Assuntos
Regulação da Expressão Gênica , Folículo Piloso/crescimento & desenvolvimento , Locos de Características Quantitativas , Sequências Reguladoras de Ácido Nucleico , Adulto , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Voluntários Saudáveis , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Couro Cabeludo
6.
BMC Dermatol ; 17(1): 3, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28228108

RESUMO

BACKGROUND: Human hair follicle (HF) cycling is characterised by the tight orchestration and regulation of signalling cascades. Research shows that micro(mi)RNAs are potent regulators of these pathways. However, knowledge of the expression of miRNAs and their target genes and pathways in the human HF is limited. The objective of this study was to improve understanding of the role of miRNAs and their regulatory interactions in the human HF. METHODS: Expression levels of ten candidate miRNAs with reported functions in hair biology were assessed in HFs from 25 healthy male donors. MiRNA expression levels were correlated with mRNA-expression levels from the same samples. Identified target genes were tested for enrichment in biological pathways and accumulation in protein-protein interaction (PPI) networks. RESULTS: Expression in the human HF was confirmed for seven of the ten candidate miRNAs, and numerous target genes for miR-24, miR-31, and miR-106a were identified. While the latter include several genes with known functions in hair biology (e.g., ITGB1, SOX9), the majority have not been previously implicated (e.g., PHF1). Target genes were enriched in pathways of interest to hair biology, such as integrin and GnRH signalling, and the respective gene products showed accumulation in PPIs. CONCLUSIONS: Further investigation of miRNA expression in the human HF, and the identification of novel miRNA target genes and pathways via the systematic integration of miRNA and mRNA expression data, may facilitate the delineation of tissue-specific regulatory interactions, and improve our understanding of both normal hair growth and the pathobiology of hair loss disorders.


Assuntos
Folículo Piloso/metabolismo , MicroRNAs/metabolismo , Biologia Computacional , Regulação da Expressão Gênica , Cabelo/crescimento & desenvolvimento , Folículo Piloso/fisiologia , Humanos
7.
J Theor Biol ; 376: 32-8, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25863267

RESUMO

BACKGROUND: Although Alzheimer's disease (AD) is a brain disorder, a number of peripheral alterations have been found in these patients, including differences in leukocyte gene expression; however, the key genes involved in plaque and tangle formation have shown a relatively small potential as diagnostic markers. We focused on MAPT, APP, NCSTN and BACE1 as the basis to build and compare blood classifiers for AD. METHODS: We used a combined model to build disease classifiers, using measures of blood pressure and serum glucose, cholesterol and triglyceride levels as well as RT-PCR expression levels of APP, NCSTN and BACE1 in peripheral blood mononuclear cells (PBMCs) from an independent cohort of 36 individuals of cognitively-normal controls, AD and other neuropathologies. Also, a set of genes was carefully selected by molecular interactions with MAPT, APP, NCSTN and BACE1 to test an expression-based classifier in a public microarray dataset of 40 samples (AD and controls). A series of discriminant analyses and classification and regression trees (C&RTs) were used to perform classification tasks. RESULTS: Using C&RTs, the combined model showed potential to differentially diagnose AD with up to 94.4% accuracy and 100% specificity for our independent sample. Furthermore, a subset of 16 genes showed the best diagnostic potential using a minimum number of expression variables, correctly classifying up to 100% of samples in the public dataset. CONCLUSIONS: Our unique method of variable selection proves that even elements showing no significant differences between controls and AD, but that have somehow been linked to AD or AD-related elements, still hold a potential to be used in its diagnosis. Sample size and inherent methodological limitations of this study need to be kept in mind. Our classifiers require careful further testing in larger cohorts. Nonetheless, we believe these results provide evidence for the utility of our innovative method, which contributes a different approach to generate promising diagnostic tools for neuropsychiatric disorders.


Assuntos
Doença de Alzheimer/sangue , Secretases da Proteína Precursora do Amiloide/biossíntese , Precursor de Proteína beta-Amiloide/biossíntese , Ácido Aspártico Endopeptidases/biossíntese , Regulação da Expressão Gênica , Leucócitos Mononucleares/metabolismo , Glicoproteínas de Membrana/biossíntese , Proteínas tau/biossíntese , Bases de Dados Genéticas , Feminino , Humanos , Masculino
8.
J Theor Biol ; 357: 21-5, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-24819465

RESUMO

BACKGROUND: Alzheimer's disease (AD) is characterized by a gradual loss of memory, orientation, judgement and language. There is still no cure for this disorder. AD pathogenesis remains fairly unknown and its underlying molecular mechanisms are not yet fully understood. Several studies have shown that the abnormal accumulation of beta-amyloid and tau proteins occurs 10 to 20 years before the onset of symptoms of the disease, so it is extremely important to identify changes in the brain before the first symptoms. METHODS: We used decision trees to classify 31 individuals (9 healthy controls and 22 AD patients in three different stages of disease) according to the expression of 69 genes previously reported in a meta-analysis, plus the expression levels of APP, APOE, BACE1, NCSTN, PSEN1, PSEN2 and MAPT. We also included in our analysis the MMSE (Mini-Mental State Examination) scores and number of NFT (neurofibrillary tangles). RESULTS: Results allowed us to generate a model of classification values for different AD stages of severity, according to MMSE scores, and achieve the identification of the expression level of protein tau that may possibly determine the onset (incipient stage) of AD. DISCUSSION: We used decision trees to model the different stages of AD (severe, moderate, incipient and control) based on the meta-analysis of gene expression levels plus MMSE and NFT scores. Both classifiers reported the variable MMSE as most informative, however it we were found that the protein tau also an important role in the onset of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Regulação da Expressão Gênica , Modelos Biológicos , Proteínas tau , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/biossíntese , Humanos , Proteínas tau/biossíntese
9.
An Acad Bras Cienc ; 86(4): 1927-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25590729

RESUMO

Protein tau plays a pivotal role in the pathophysiology of Alzheimer's disease, where its hyperphos-phorylation promotes aggregation and microtubule destabilization. Tau undergoes alternative splicing which generates six isoforms in the human brain, due to inclusion/exclusion of exons 2, 3 and 10. Dysregulation of the splicing process of tau exon 10 is sufficient to cause tauopathy and has shown to be influenced by beta-amyloid peptides, but splicing of other exons is less studied. We studied the effects of beta-amyloid(42) in the alternative splicing of tau exons 2/3 and 6, using untreated and Nerve Growth Factor-induced PC12 cells. Beta-amyloid exposure caused formed cell processes to retract in differentiated cells and altered the expression of exons 2/3 in both undifferentiated and differentiated cells. Expression of exon 6 was repressed in undifferentiated cells only. Our results suggest that beta-amyloid interferes with the splicing process of exons 2/3, favoring their exclusion and thus the expression of immature tau isoforms that are less efficient in stabilizing microtubules and may also be more prone to hyperphosphorylation. The molecular mechanism for this amyloid-tau interaction remains to be determined, but may have potential implications for the understanding of the underlying neuropathological processes in Alzheimer's disease.


Assuntos
Processamento Alternativo/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Encéfalo/metabolismo , Éxons/genética , Fragmentos de Peptídeos/genética , Proteínas tau/genética , Doença de Alzheimer/metabolismo , Animais , Humanos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Células PC12 , Ratos , Tauopatias/genética , Proteínas tau/metabolismo
10.
Transl Psychiatry ; 14(1): 174, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570518

RESUMO

The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we performed an exploratory study of the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. Overall, we observed relatively weak associations (p < 1 × 10-4) with BP phenotypes within immune-related genes. Network and functional enrichment analyses of the top findings from the association analyses of Li response variables showed an overrepresentation of pathways participating in cell adhesion and intercellular communication. These appeared to converge on the well-known Li-induced inhibition of GSK-3ß. Association analyses of age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation suggested modest contributions of genes such as RTN4, XKR4, NRXN1, NRG1/3 and GRK5 to disease characteristics. PGS analyses returned weak associations (p < 0.05) between inflammation markers and the studied BP phenotypes. Our results suggest a modest relationship between immunity and clinical features in BP. More research is needed to assess the potential therapeutic relevance.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Transtorno Bipolar/psicologia , Lítio/uso terapêutico , Estudos Retrospectivos , Imunogenética , Glicogênio Sintase Quinase 3 beta , Fenótipo
11.
Commun Biol ; 7(1): 1103, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251807

RESUMO

Neurofilament light chain (NfL) levels in circulation have been established as a sensitive biomarker of neuro-axonal damage across a range of neurodegenerative disorders. Elucidation of the genetic architecture of blood NfL levels could provide new insights into molecular mechanisms underlying neurodegenerative disorders. In this meta-analysis of genome-wide association studies (GWAS) of blood NfL levels from eleven cohorts of European ancestry, we identify two genome-wide significant loci at 16p12 (UMOD) and 17q24 (SLC39A11). We observe association of three loci at 1q43 (FMN2), 12q14, and 12q21 with blood NfL levels in the meta-analysis of African-American ancestry. In the trans-ethnic meta-analysis, we identify three additional genome-wide significant loci at 1p32 (FGGY), 6q14 (TBX18), and 4q21. In the post-GWAS analyses, we observe the association of higher NfL polygenic risk score with increased plasma levels of total-tau, Aß-40, Aß-42, and higher incidence of Alzheimer's disease in the Rotterdam Study. Furthermore, Mendelian randomization analysis results suggest that a lower kidney function could cause higher blood NfL levels. This study uncovers multiple genetic loci of blood NfL levels, highlighting the genes related to molecular mechanism of neurodegeneration.


Assuntos
Estudo de Associação Genômica Ampla , Doenças Neurodegenerativas , Proteínas de Neurofilamentos , Humanos , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/sangue , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/sangue , Predisposição Genética para Doença , Loci Gênicos , Biomarcadores/sangue , Polimorfismo de Nucleotídeo Único , Masculino , Feminino , Doença de Alzheimer/genética , Doença de Alzheimer/sangue
12.
Int J Bipolar Disord ; 12(1): 20, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865039

RESUMO

BACKGROUND: Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N = 2064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. RESULTS: We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. CONCLUSIONS: Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.

13.
An Acad Bras Cienc ; 85(4): 1489-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24346801

RESUMO

Although Alzheimer's disease is a brain disorder, a number of peripheral alterations have been found in these patients; however, little is known about how the key genes involved in the pathophysiology express in peripheral cells such as lymphocytes during normal compared to neuropathological ageing. We analysed the expression of tau, of the amyloid precursor protein, of nicastrin and of the ß-site APP cleaving enzyme genes by RT-PCR in lymphocytes from a small group of late-onset Alzheimer's disease patients, from aged patients suffering from neuropsychological conditions different from Alzheimer's and from cognitively healthy subjects divided in four groups by age. We also investigated correlations between gene expression and levels of blood pressure, glucose, total cholesterol and triglycerides as risk factors for Alzheimer's. Results show no tau expression in lymphocytes, a lack of detection of nicastrin expression in Alzheimer's patients and correlations between the medical conditions studied and gene expression in lymphocytes. We believe nicastrin gene expression in lymphocytes should be considered of interest for further analyses in a wider population to investigate whether it might represent a potential biomarker to differentiate Alzheimer's from other neuropsychological disorders.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Linfócitos/metabolismo , Proteínas tau/metabolismo , Adulto , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Pressão Sanguínea/fisiologia , Estudos de Casos e Controles , Colesterol/sangue , Glucose/análise , Humanos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco , Triglicerídeos/sangue , Proteínas tau/genética
14.
Brain Commun ; 5(5): fcad263, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901043

RESUMO

Blood-based analysis of amyloid-ß is increasingly applied to incrementally establish diagnostic tests for Alzheimer's disease. To this aim, it is necessary to determine factors that can alter blood-based concentrations of amyloid-ß. We cross-sectionally analysed amyloid-ß-40 and amyloid-ß-42 concentrations and the 40/42 ratio in 440 community-dwelling adults and associations with body mass index, waist-to-height ratio and body composition assessed using bioelectrical impedance analysis. Body mass index and waist-to-height ratio were inversely associated with plasma amyloid-ß-42 concentrations. Body fat mass, but not body cell mass and extracellular mass, was inversely associated with amyloid-ß-42 levels. The results indicate that plasma concentrations of amyloid-ß-42 are lower in those with increased body mass index and body fat, and associations with amyloid-ß-40 did not reach significance after controlling for multiple testing. The findings support the use of body mass index as an easy-to-measure factor that should be accounted for in diagnostic models for plasma amyloid-ß.

15.
Front Neurol ; 14: 1145737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970523

RESUMO

Introduction: The measurement of neurofilament light chain (NfL) in blood is a promising biomarker of neurological injury and disease. We investigated the genetic factors that underlie serum NfL levels (sNfL) of individuals without neurological conditions. Methods: We performed a discovery genome-wide association study (GWAS) of sNfL in participants of the German BiDirect Study (N = 1,899). A secondary GWAS for meta-analysis was performed in a small Austrian cohort (N = 287). Results from the meta-analysis were investigated in relation with several clinical variables in BiDirect. Results: Our discovery GWAS identified 12 genomic loci at the suggestive threshold ((p < 1 × 10-5). After meta-analysis, 7 loci were suggestive of an association with sNfL. Genotype-specific differences in sNfL were observed for the lead variants of meta-analysis loci (rs34523114, rs114956339, rs529938, rs73198093, rs34372929, rs10982883, and rs1842909) in BiDirect participants. We identified potential associations in meta-analysis loci with markers of inflammation and renal function. At least 6 protein-coding genes (ACTG2, TPRKB, DMXL1, COL23A1, NAT1, and RIMS2) were suggested as genetic factors contributing to baseline sNfL levels. Discussion: Our findings suggest that polygenic regulation of neuronal processes, inflammation, metabolism and clearance modulate the variability of NfL in the circulation. These could aid in the interpretation of sNfL measurements in a personalized manner.

16.
Ther Adv Neurol Disord ; 16: 17562864231211077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084102

RESUMO

Background: Cladribine is a highly effective immunotherapy that is applied in two short-term courses over 2 years and reduces relapse rate and disease progression in patients with relapsing multiple sclerosis (MS). Despite the short treatment period, cladribine has a long-lasting effect on disease activity even after recovery of lymphocyte counts, suggesting a yet undefined long-term immune modulating effect. Objectives: Our aim was to provide a more profound understanding of the detailed effects of cladribine, also with regard to the patients' therapy response. Design: We performed an open-labeled, explorative, prospective, single-arm study, in which we examined the detailed lymphocyte subset development of MS patients who received cladribine treatment over 2 years. Methods: We performed in-depth profiling of the effects of cladribine on peripheral blood lymphocytes by flow cytometry, bulk RNA sequencing of sorted CD4+ T cells, CD8+ T cells, and CD19+ B cells as well as single-cell RNA sequencing of peripheral blood mononuclear cells in a total of 23 MS patients before and at different time points up to 24 months after cladribine treatment. Data were correlated with clinical and cranial magnetic resonance imaging (MRI) disease activity. Results: Flow cytometry revealed a predominant and sustained reduction of memory B cells compared to other B cell subsets after cladribine treatment, whereas T cell subsets were slightly reduced in a more uniform pattern. The overall transcriptional profile of total blood B cells exhibited reduced expression of proinflammatory and T cell activating genes, while single-cell transcriptomics revealed that gene expression within each B cell cluster did not change over time. Stable patients displayed stronger reductions of selected memory B cell clusters as compared to patients with clinical or cerebral MRI disease activity. Conclusion: We describe a pronounced and sustained effect of cladribine on the memory B cell compartment, and the resulting change in B cell subset composition causes a significant alteration of B cell transcriptional profiles resulting in reduced proinflammatory and T cell activating capacities. The extent of reduction in selected memory B cell clusters by cladribine may predict treatment response.

17.
Res Sq ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37461719

RESUMO

The link between bipolar disorder (BP) and immune dysfunction remains controversial. While epidemiological studies have long suggested an association, recent research has found only limited evidence of such a relationship. To clarify this, we investigated the contributions of immune-relevant genetic factors to the response to lithium (Li) treatment and the clinical presentation of BP. First, we assessed the association of a large collection of immune-related genes (4,925) with Li response, defined by the Retrospective Assessment of the Lithium Response Phenotype Scale (Alda scale), and clinical characteristics in patients with BP from the International Consortium on Lithium Genetics (ConLi+Gen, N = 2,374). Second, we calculated here previously published polygenic scores (PGSs) for immune-related traits and evaluated their associations with Li response and clinical features. We found several genes associated with Li response at p < 1×10- 4 values, including HAS3, CNTNAP5 and NFIB. Network and functional enrichment analyses uncovered an overrepresentation of pathways involved in cell adhesion and intercellular communication, which appear to converge on the well-known Li-induced inhibition of GSK-3ß. We also found various genes associated with BP's age-at-onset, number of mood episodes, and presence of psychosis, substance abuse and/or suicidal ideation at the exploratory threshold. These included RTN4, XKR4, NRXN1, NRG1/3 and GRK5. Additionally, PGS analyses suggested serum FAS, ECP, TRANCE and cytokine ligands, amongst others, might represent potential circulating biomarkers of Li response and clinical presentation. Taken together, our results support the notion of a relatively weak association between immunity and clinically relevant features of BP at the genetic level.

18.
Res Sq ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38077040

RESUMO

Background: Lithium (Li) remains the treatment of choice for bipolar disorders (BP). Its mood-stabilizing effects help reduce the long-term burden of mania, depression and suicide risk in patients with BP. It also has been shown to have beneficial effects on disease-associated conditions, including sleep and cardiovascular disorders. However, the individual responses to Li treatment vary within and between diagnostic subtypes of BP (e.g. BP-I and BP-II) according to the clinical presentation. Moreover, long-term Li treatment has been linked to adverse side-effects that are a cause of concern and non-adherence, including the risk of developing chronic medical conditions such as thyroid and renal disease. In recent years, studies by the Consortium on Lithium Genetics (ConLiGen) have uncovered a number of genetic factors that contribute to the variability in Li treatment response in patients with BP. Here, we leveraged the ConLiGen cohort (N=2,064) to investigate the genetic basis of Li effects in BP. For this, we studied how Li response and linked genes associate with the psychiatric symptoms and polygenic load for medical comorbidities, placing particular emphasis on identifying differences between BP-I and BP-II. Results: We found that clinical response to Li treatment, measured with the Alda scale, was associated with a diminished burden of mania, depression, substance and alcohol abuse, psychosis and suicidal ideation in patients with BP-I and, in patients with BP-II, of depression only. Our genetic analyses showed that a stronger clinical response to Li was modestly related to lower polygenic load for diabetes and hypertension in BP-I but not BP-II. Moreover, our results suggested that a number of genes that have been previously linked to Li response variability in BP differentially relate to the psychiatric symptomatology, particularly to the numbers of manic and depressive episodes, and to the polygenic load for comorbid conditions, including diabetes, hypertension and hypothyroidism. Conclusions: Taken together, our findings suggest that the effects of Li on symptomatology and comorbidity in BP are partially modulated by common genetic factors, with differential effects between BP-I and BP-II.

19.
Front Nutr ; 9: 910762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859757

RESUMO

Background: During early phases of life, such as prenatal or early postnatal development and adolescence, an organism's phenotype can be shaped by the environmental conditions it experiences. According to the Match-Mismatch hypothesis (MMH), changes to this environment during later life stages can result in a mismatch between the individual's adaptations and the prevailing environmental conditions. Thus, negative consequences in welfare and health can occur. We aimed to test the MMH in the context of food availability, assuming adolescence as a sensitive period of adaptation. Methods: We have previously reported a study of the physiological and behavioral effects of match and mismatch conditions of high (ad libitum) and low (90% of ad libitum intake) food availability from adolescence to early adulthood in female C57BL/6J mice (n = 62). Here, we performed RNA-sequencing of the livers of a subset of these animals (n = 16) to test the effects of match and mismatch feeding conditions on the liver transcriptome. Results: In general, we found no effect of the match-mismatch situations. Contrarily, the amount of food available during early adulthood (low vs. high) drove the differences we observed in final body weight and gene expression in the liver, regardless of the amount of food available to the animals during adolescence. Many of the differentially expressed genes and the corresponding biological processes found to be overrepresented overlapped, implicating common changes in various domains. These included metabolism, homeostasis, cellular responses to diverse stimuli, transport of bile acids and other molecules, cell differentiation, major urinary proteins, and immunity and inflammation. Conclusions: Our previous and present observations found no support for the MMH in the context of low vs high food availability from adolescence to early adulthood in female C57BL/6J mice. However, even small differences of approximately 10% in food availability during early adulthood resulted in physiological and molecular changes with potential beneficial implications for metabolic diseases.

20.
Front Mol Neurosci ; 15: 1025389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533130

RESUMO

Background: The amygdala is crucial for emotional cognitive processing. Affective or emotional states can bias cognitive processes, including attention, memory, and decision-making. This can result in optimistic or pessimistic behaviors that are partially driven by the activation of the amygdala. The resulting emotional cognitive bias is a common feature of anxiety and mood disorders, both of which are interactively influenced by genetic and environmental factors. It is also known that emotional cognitive biases can be influenced by environmental factors. However, little is known about the effects of genetics and/or gene-environment interactions on emotional cognitive biases. We investigated the effects of the genetic background and environmental enrichment on the transcriptional profiles of the mouse amygdala following a well-established cognitive bias test. Methods: Twenty-four female C57BL/6J and B6D2F1N mice were housed either in standard (control) conditions or in an enriched environment. After appropriate training, the cognitive bias test was performed on 19 mice that satisfactorily completed the training scheme to assess their responses to ambiguous cues. This allowed us to calculate an "optimism score" for each mouse. Subsequently, we dissected the anterior and posterior portions of the amygdala to perform RNA-sequencing for differential expression and other statistical analyses. Results: In general, we found only minor changes in the amygdala's transcriptome associated with the levels of optimism in our mice. In contrast, we observed wide molecular effects of the genetic background in both housing environments. The C57BL/6J animals showed more transcriptional changes in response to enriched environments than the B6D2F1N mice. We also generally found more dysregulated genes in the posterior than in the anterior portion of the amygdala. Gene set overrepresentation analyses consistently implicated cellular metabolic responses and immune processes in the differences observed between mouse strains, while processes favoring neurogenesis and neurotransmission were implicated in the responses to environmental enrichment. In a correlation analysis, lipid metabolism in the anterior amygdala was suggested to influence the levels of optimism. Conclusions: Our observations underscore the importance of selecting appropriate animal models when performing molecular studies of affective conditions or emotional states, and suggest an important role of immune and stress responses in the genetic component of emotion regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA