Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(19): 11199-11213, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32990725

RESUMO

The MED1 subunit of the Mediator complex is an essential coactivator of nuclear receptor-mediated transcriptional activation. While structural requirements for ligand-dependent binding of classical coactivator motifs of MED1 to numerous nuclear receptor ligand-binding domains have been fully elucidated, the recognition of the full-length or truncated coactivator by full nuclear receptor complexes remain unknown. Here we present structural details of the interaction between a large part of MED1 comprising its structured N-terminal and the flexible receptor-interacting domains and the mutual heterodimer of the vitamin D receptor (VDR) and the retinoid X receptor (RXR) bound to their cognate DNA response element. Using a combination of structural and biophysical methods we show that the ligand-dependent interaction between VDR and the second coactivator motif of MED1 is crucial for complex formation and we identify additional, previously unseen, interaction details. In particular, we identified RXR regions involved in the interaction with the structured N-terminal domain of MED1, as well as VDR regions outside the classical coactivator binding cleft affected by coactivator recruitment. These findings highlight important roles of each receptor within the heterodimer in selective recognition of MED1 and contribute to our understanding of the nuclear receptor-coregulator complexes.


Assuntos
DNA/metabolismo , Subunidade 1 do Complexo Mediador , Receptores de Calcitriol , Receptor X Retinoide alfa , Humanos , Ligantes , Subunidade 1 do Complexo Mediador/química , Subunidade 1 do Complexo Mediador/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Receptor X Retinoide alfa/química , Receptor X Retinoide alfa/metabolismo
2.
Chemistry ; 26(61): 13797-13805, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32588934

RESUMO

Site-selective modification of proteins has been the object of intense studies over the past decades, especially in the therapeutic field. Prominent results have been obtained with recombinant proteins, for which site-specific conjugation is made possible by the incorporation of particular amino acid residues or peptide sequences. In parallel, methods for the site-selective and site-specific conjugation of native and natural proteins are starting to thrive, allowing the controlled functionalization of various types of amino acid residues. Pursuing the efforts in this field, we planned to develop a new type of site-selective method, aiming at the simultaneous conjugation of two amino acid residues. We reasoned that this should give higher chances of developing a site-selective strategy compared to the great majority of existing methods that solely target a single residue. We opted for the Ugi four-centre three-component reaction to implement this idea, with the aim of conjugating the side-chain amine and carboxylate groups of two neighbouring lysine and aspartate/glutamate. Herein, we show that this strategy can give access to valuable antibody conjugates bearing several different payloads; furthermore, the approach limits the potential conjugation sites to only six on the model antibody trastuzumab.


Assuntos
Imunoconjugados , Trastuzumab , Sequência de Aminoácidos , Aminoácidos/química , Antineoplásicos Imunológicos/química , Imunoconjugados/química , Trastuzumab/química
3.
Org Biomol Chem ; 16(8): 1305-1311, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29388667

RESUMO

Here, we introduce 4-azidophenyl glyoxal (APG) as an efficient plug-and-play reagent for the selective functionalisation of arginine residues in native antibodies. The selective reaction between APG and arginines' guanidine groups allowed a facile introduction of azide groups on the monoclonal antibody trastuzumab (plug stage). These pre-functionalised antibody-azide conjugates were then derivatised during the "play stage" via a biorthogonal cycloaddition reaction with different strained alkynes. This afforded antibody-fluorophore and antibody-oligonucleotide conjugates, all showing preserved antigen selectivity and high stability in human plasma. Due to a lower content of arginines compared to lysines in native antibodies, this approach is thus attractive for the preparation of more homogeneous conjugates. This method proved to be orthogonal to classical lysine-based conjugation and allowed straightforward generation of dual-payload antibody.


Assuntos
Anticorpos Monoclonais/química , Arginina/química , Azidas/química , Fenilglioxal/análogos & derivados , Alcinos/química , Reação de Cicloadição , Imunoconjugados/química , Lisina/química , Fenilglioxal/química , Trastuzumab/química
4.
J Pharm Anal ; 13(5): 494-502, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37305783

RESUMO

Monitoring of host cell proteins (HCPs) during the manufacturing of monoclonal antibodies (mAb) has become a critical requirement to provide effective and safe drug products. Enzyme-linked immunosorbent assays are still the gold standard methods for the quantification of protein impurities. However, this technique has several limitations and does, among others, not enable the precise identification of proteins. In this context, mass spectrometry (MS) became an alternative and orthogonal method that delivers qualitative and quantitative information on all identified HCPs. However, in order to be routinely implemented in biopharmaceutical companies, liquid chromatography-MS based methods still need to be standardized to provide highest sensitivity and robust and accurate quantification. Here, we present a promising MS-based analytical workflow coupling the use of an innovative quantification standard, the HCP Profiler solution, with a spectral library-based data-independent acquisition (DIA) method and strict data validation criteria. The performances of the HCP Profiler solution were compared to more conventional standard protein spikes and the DIA approach was benchmarked against a classical data-dependent acquisition on a series of samples produced at various stages of the manufacturing process. While we also explored spectral library-free DIA interpretation, the spectral library-based approach still showed highest accuracy and reproducibility (coefficients of variation < 10%) with a sensitivity down to the sub-ng/mg mAb level. Thus, this workflow is today mature to be used as a robust and straightforward method to support mAb manufacturing process developments and drug products quality control.

5.
Front Mol Biosci ; 9: 950871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936790

RESUMO

The Two-Partner secretion pathway mediates protein transport across the outer membrane of Gram-negative bacteria. TpsB transporters belong to the Omp85 superfamily, whose members catalyze protein insertion into, or translocation across membranes without external energy sources. They are composed of a transmembrane ß barrel preceded by two periplasmic POTRA domains that bind the incoming protein substrate. Here we used an integrative approach combining in vivo assays, mass spectrometry, nuclear magnetic resonance and electron paramagnetic resonance techniques suitable to detect minor states in heterogeneous populations, to explore transient conformers of the TpsB transporter FhaC. This revealed substantial, spontaneous conformational changes on a slow time scale, with parts of the POTRA2 domain approaching the lipid bilayer and the protein's surface loops. Specifically, our data indicate that an amphipathic POTRA2 ß hairpin can insert into the ß barrel. We propose that these motions enlarge the channel and initiate substrate secretion. Our data propose a solution to the conundrum how TpsB transporters mediate protein secretion without the need for cofactors, by utilizing intrinsic protein dynamics.

6.
J Mol Biol ; 434(19): 167760, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901867

RESUMO

DPCD is a protein that may play a role in cilia formation and whose absence leads to primary ciliary dyskinesia (PCD), a rare disease caused by impairment of ciliated cells. Except for high-throughput studies that identified DPCD as a possible RUVBL1 (R1) and RUVBL2 (R2) partner, no in-depth cellular, biochemical, and structural investigation involving DPCD have been reported so far. R1 and R2 proteins are ubiquitous highly conserved AAA + family ATPases that assemble and mature a plethora of macromolecular complexes and are pivotal in numerous cellular processes, especially by guaranteeing a co-chaperoning function within R2TP or R2TP-like machineries. In the present study, we identified DPCD as a new R1R2 partner in vivo. We show that DPCD interacts directly with R1 and R2 in vitro and in cells. We characterized the physico-chemical properties of DPCD in solution and built a 3D model of DPCD. In addition, we used a variety of orthogonal biophysical techniques including small-angle X-ray scattering, structural mass spectrometry and electron microscopy to assess the molecular determinants of DPCD interaction with R1R2. Interestingly, DPCD disrupts the dodecameric state of R1R2 complex upon binding and this interaction occurs mainly via the DII domains of R1R2.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Transporte , DNA Helicases , Complexos Multiproteicos , Proteínas , ATPases Associadas a Diversas Atividades Celulares/química , Proteínas de Transporte/química , DNA Helicases/química , Humanos , Complexos Multiproteicos/química , Proteínas/química
7.
Nat Commun ; 12(1): 1859, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767140

RESUMO

Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins initiates co-transcriptionally and requires the action of the assembly machinery including the Hsp90/R2TP complex, the Rsa1p:Hit1p heterodimer and the Bcd1 protein. We present genetic interactions between the Rsa1p-encoding gene and genes involved in chromatin organization including RTT106 that codes for the H3-H4 histone chaperone Rtt106p controlling H3K56ac deposition. We show that Bcd1p binds Rtt106p and controls its transcription-dependent recruitment by reducing its association with RNA polymerase II, modulating H3K56ac levels at gene body. We reveal the 3D structures of the free and Rtt106p-bound forms of Bcd1p using nuclear magnetic resonance and X-ray crystallography. The interaction is also studied by a combination of biophysical and proteomic techniques. Bcd1p interacts with a region that is distinct from the interaction interface between the histone chaperone and histone H3. Our results are evidence for a protein interaction interface for Rtt106p that controls its transcription-associated activity.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Chaperonas Moleculares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ativação Transcricional/fisiologia , Proliferação de Células/fisiologia , Cromatina/genética , Cristalografia por Raios X , Histonas/metabolismo , Ressonância Magnética Nuclear Biomolecular , RNA Polimerase II/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica/genética
8.
Chem Sci ; 11(5): 1210-1215, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34123245

RESUMO

Controlled protein functionalization holds great promise for a wide variety of applications. However, despite intensive research, the stoichiometry of the functionalization reaction remains difficult to control due to the inherent stochasticity of the conjugation process. Classical approaches that exploit peculiar structural features of specific protein substrates, or introduce reactive handles via mutagenesis, are by essence limited in scope or require substantial protein reengineering. We herein present equimolar native chemical tagging (ENACT), which precisely controls the stoichiometry of inherently random conjugation reactions by combining iterative low-conversion chemical modification, process automation, and bioorthogonal trans-tagging. We discuss the broad applicability of this conjugation process to a variety of protein substrates and payloads.

9.
J Am Soc Mass Spectrom ; 30(11): 2419-2429, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31429052

RESUMO

Middle-down mass spectrometry (MD MS) has emerged as a promising alternative to classical bottom-up approaches for protein characterization. Middle-level experiments after enzymatic digestion are routinely used for subunit analysis of monoclonal antibody (mAb)-related compounds, providing information on drug load distribution and average drug-to-antibody ratio (DAR). However, peptide mapping is still the gold standard for primary amino acid sequence assessment, post-translational modifications (PTM), and drug conjugation identification and localization. However, peptide mapping strategies can be challenging when dealing with more complex and heterogeneous mAb formats, like antibody-drug conjugates (ADCs). We report here, for the first time, MD MS analysis of a third-generation site-specific DAR4 ADC using different fragmentation techniques, including higher-energy collisional- (HCD), electron-transfer (ETD) dissociation and 213 nm ultraviolet photodissociation (UVPD). UVPD used as a standalone technique for ADC subunit analysis afforded, within the same liquid chromatography-MS/MS run, enhanced performance in terms of primary sequence coverage compared to HCD- or ETD-based MD approaches, and generated substantially more MS/MS fragments containing either drug conjugation or glycosylation site information, leading to confident drug/glycosylation site identification. In addition, our results highlight the complementarity of ETD and UVPD for both primary sequence validation and drug conjugation/glycosylation site assessment. Altogether, our results highlight the potential of UVPD for ADC MD MS analysis for drug conjugation/glycosylation site assessment, and indicate that MD MS strategies can improve structural characterization of empowered next-generation mAb-based formats, especially for PTMs and drug conjugation sites validation.


Assuntos
Imunoconjugados/química , Imunoconjugados/metabolismo , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Sítios de Ligação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA