RESUMO
Paternal chromatin undergoes extensive structural and epigenetic changes during mammalian spermatogenesis, producing sperm with an epigenome optimized for the transition to embryogenesis. Lysine demethylase 6a (KDM6A, also called UTX) promotes gene activation in part via demethylation of H3K27me3, a developmentally important repressive modification abundant throughout the epigenome of spermatogenic cells and sperm. We previously demonstrated increased cancer risk in genetically wild-type mice derived from a paternal germ line lacking Kdm6a (Kdm6a cKO), indicating a role for KDM6A in regulating heritable epigenetic states. However, the regulatory function of KDM6A during spermatogenesis is not known. Here, we show that Kdm6a is transiently expressed in spermatogenesis, with RNA and protein expression largely limited to late spermatogonia and early meiotic prophase. Kdm6a cKO males do not have defects in fertility or the overall progression of spermatogenesis. However, hundreds of genes are deregulated upon loss of Kdm6a in spermatogenic cells, with a strong bias toward downregulation coinciding with the time when Kdm6a is expressed. Misregulated genes encode factors involved in chromatin organization and regulation of repetitive elements, and a subset of these genes was persistently deregulated in the male germ line across two generations of offspring of Kdm6a cKO males. Genome-wide epigenetic profiling revealed broadening of H3K27me3 peaks in differentiating spermatogonia of Kdm6a cKO mice, suggesting that KDM6A demarcates H3K27me3 domains in the male germ line. Our findings highlight KDM6A as a transcriptional activator in the mammalian male germ line that is dispensable for spermatogenesis but important for safeguarding gene regulatory state intergenerationally.
Assuntos
Histonas , Meiose , Masculino , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Sêmen/metabolismo , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Expressão Gênica , Mamíferos/genéticaRESUMO
Stem cell replacement holds the potential for sensorineural hearing loss (SNHL) treatment. However, its translation into clinical practice requires strategies for improving stem cell survival following intracochlear transplantation. Considering recent findings showing that the inner ear contains a resident population of immune cells, we hypothesized that immune evasion would improve the survival and residence time of transplanted stem cells in the cochlea, potentially leading to better outcomes. To test this, we leveraged genetic engineering techniques to develop hypoimmunogenic human-induced pluripotent stem cells (hi-iPSC), which lack human leukocyte antigen expression. We found that gene editing does not affect the biological properties of hi-iPSCs, including their capacity to differentiate into otic neural progenitors (ONPs). Compared to wild-type ONPs, more hypoimmunogenic ONPs (derived from hi-iPSCs) were found in the inner ear of immunocompetent mice ten days following cochlear xenotransplantation. This approach may open a new avenue for experimental and clinical SNHL treatments.
Assuntos
Perda Auditiva , Células-Tronco Pluripotentes Induzidas , Camundongos , Humanos , Animais , Transplante Heterólogo , Diferenciação Celular , Perda Auditiva/metabolismo , Transplante de Células-Tronco/métodos , Células-Tronco Pluripotentes Induzidas/metabolismoRESUMO
Although cochlear implant (CI) technology has allowed for the partial restoration of hearing over the last few decades, persistent challenges (e.g., poor performance in noisy environments and limited ability to decode intonation and music) remain. The "electrode-neuron gap" is inherent to these challenges and poses the most significant obstacle to advancing past the current plateau in CI performance. We propose the development of a "neuro-regenerative nexus"-a biological interface that doubly preserves native spiral ganglion neurons (SGNs) while precisely directing the growth of neurites arising from transplanted human pluripotent stem cell (hPSC)-derived otic neuronal progenitors (ONPs) toward the native SGN population. We hypothesized that the Polyhedrin Delivery System (PODS®-recombinant human brain-derived neurotrophic factor [rhBDNF]) could stably provide the adequate BDNF concentration gradient to hPSC-derived late-stage ONPs to facilitate otic neuronal differentiation and directional neurite outgrowth. To test this hypothesis, a finite element model (FEM) was constructed to simulate BDNF concentration profiles generated by PODS®-rhBDNF based on initial concentration and culture device geometry. For biological validation of the FEM, cell culture experiments assessing survival, differentiation, neurite growth direction, and synaptic connections were conducted using a multi-chamber microfluidic device. We were able to successfully generate the optimal BDNF concentration gradient to enable survival, neuronal differentiation toward SGNs, directed neurite extension of hPSC-derived SGNs, and synaptogenesis between two hPSC-derived SGN populations. This proof-of-concept study provides a step toward the next generation of CI technology. STATEMENT OF SIGNIFICANCE: Our study demonstrates that the generation of in vitro neurotrophin concentration gradients facilitates survival, neuronal differentiation toward auditory neurons, and directed neurite extension of human pluripotent stem cell-derived auditory neurons. These findings are indispensable to designing a bioactive cochlear implant, in which stem cell-derived neurons are integrated into a cochlear implant electrode strip, as the strategy will confer directional neurite growth from the transplanted cells in the inner ear. This study is the first to present the concept of a "neuro-regenerative nexus" congruent with a bioactive cochlear implant to eliminate the electrode-neuron gap-the most significant barrier to next-generation cochlear implant technology.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Implantes Cocleares , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Análise de Elementos Finitos , Humanos , Neuritos , Neurônios , Gânglio Espiral da Cóclea/fisiologiaRESUMO
Stem cell-replacement therapies have been proposed as a potential tool to treat sensorineural hearing loss by aiding the regeneration of spiral ganglion neurons (SGNs) in the inner ear. However, transplantation procedures have yet to be explored thoroughly to ensure proper cell differentiation and optimal transplant procedures. We hypothesized that the aggregation of human embryonic stem cell (hESC)-derived otic neuronal progenitor (ONP) cells into a multicellular form would improve their function and their survival in vivo post-transplantation. We generated hESC-derived ONP spheroids-an aggregate form conducive to differentiation, transplantation, and prolonged cell survival-to optimize conditions for their transplantation. Our findings indicate that these cell spheroids maintain the molecular and functional characteristics similar to those of ONP cells, which are upstream in the SGN lineage. Moreover, our phenotypical, electrophysiological, and mechanical data suggest an optimal spheroid transplantation point after 7 days of in vitro three-dimensional (3D) culture. We have also developed a feasible transplantation protocol for these spheroids using a micropipette aided by a digital microinjection system. In summary, the present work demonstrates that the transplantation of ONP cells in spheroid form into the inner ear through micropipette 7 days after seeding for 3D spheroid culture is an expedient and viable method for stem cell replacement therapies in the inner ear.
Assuntos
Células-Tronco Embrionárias Humanas , Diferenciação Celular , Humanos , Neurônios , Esferoides Celulares , Gânglio Espiral da Cóclea , Transplante de Células-TroncoRESUMO
Although the application of human embryonic stem cells (hESCs) in stem cell-replacement therapy remains promising, its potential is hindered by a low cell survival rate in post-transplantation within the inner ear. Here, we aim to enhance the in vitro and in vivo survival rate and neuronal differentiation of otic neuronal progenitors (ONPs) by generating an artificial stem cell niche consisting of three-dimensional (3D) hESC-derived ONP spheroids with a nanofibrillar cellulose hydrogel and a sustained-release brain-derivative neurotrophic factor delivery system. Our results demonstrated that the transplanted hESC-derived ONP spheroids survived and neuronally differentiated into otic neuronal lineages in vitro and in vivo and also extended neurites toward the bony wall of the cochlea 90 days after the transplantation without the use of immunosuppressant medication. Our data in vitro and in vivo presented here provide sufficient evidence that we have established a robust, reproducible protocol for in vivo transplantation of hESC-derived ONPs to the inner ear. Using our protocol to create an artificial stem cell niche in the inner ear, it is now possible to work on integrating transplanted hESC-derived ONPs further and also to work toward achieving functional auditory neurons generated from hESCs. Our findings suggest that the provision of an artificial stem cell niche can be a future approach to stem cell-replacement therapy for inner-ear regeneration. STATEMENT OF SIGNIFICANCE: Inner ear regeneration utilizing human embryonic stem cell-derived otic neuronal progenitors (hESC-derived ONPs) has remarkable potential for treating sensorineural hearing loss. However, the local environment of the inner ear requires a suitable stem cell niche to allow hESC-derived ONP engraftment as well as neuronal differentiation. To overcome this obstacle, we utilized three-dimensional spheroid formation (direct contact), nanofibrillar cellulose hydrogel (extracellular matrix), and a neurotrophic factor delivery system to artificially create a stem cell niche in vitro and in vivo. Our in vitro and in vivo data presented here provide sufficient evidence that we have established a robust, reproducible protocol for in vivo transplantation of hESC-derived ONPs to the inner ear.
Assuntos
Orelha Interna , Nicho de Células-Tronco , Diferenciação Celular , Celulose , Preparações de Ação Retardada , Humanos , Hidrogéis/farmacologia , Fatores de Crescimento NeuralRESUMO
Hepatic steatosis is a strong risk factor for the development of hepatocellular carcinoma (HCC), yet little is known about the molecular pathology associated with this factor. In this study, we performed a forward genetic screen using Sleeping Beauty (SB) transposon insertional mutagenesis in mice treated to induce hepatic steatosis and compared the results to human HCC data. In humans, we determined that steatosis increased the proportion of female HCC patients, a pattern also reflected in mice. Our genetic screen identified 203 candidate steatosis-associated HCC genes, many of which are altered in human HCC and are members of established HCC-driving signaling pathways. The protein kinase A/cyclic AMP signaling pathway was altered frequently in mouse and human steatosis-associated HCC. We found that activated PKA expression drove steatosis-specific liver tumorigenesis in a mouse model. Another candidate HCC driver, the N-acetyltransferase NAT10, which we found to be overexpressed in human steatosis-associated HCC and associated with decreased survival in human HCC, also drove liver tumorigenesis in a steatotic mouse model. This study identifies genes and pathways promoting HCC that may represent novel targets for prevention and treatment in the context of hepatic steatosis, an area of rapidly growing clinical significance. Cancer Res; 77(23); 6576-88. ©2017 AACR.