Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2213886120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893262

RESUMO

Lysosomes are catabolic organelles involved in macromolecular digestion, and their dysfunction is associated with pathologies ranging from lysosomal storage disorders to common neurodegenerative diseases, many of which have lipid accumulation phenotypes. The mechanism of lipid efflux from lysosomes is well understood for cholesterol, while the export of other lipids, particularly sphingosine, is less well studied. To overcome this knowledge gap, we have developed functionalized sphingosine and cholesterol probes that allow us to follow their metabolism, protein interactions, and their subcellular localization. These probes feature a modified cage group for lysosomal targeting and controlled release of the active lipids with high temporal precision. An additional photocrosslinkable group allowed for the discovery of lysosomal interactors for both sphingosine and cholesterol. In this way, we found that two lysosomal cholesterol transporters, NPC1 and to a lesser extent LIMP-2/SCARB2, bind to sphingosine and showed that their absence leads to lysosomal sphingosine accumulation which hints at a sphingosine transport role of both proteins. Furthermore, artificial elevation of lysosomal sphingosine levels impaired cholesterol efflux, consistent with sphingosine and cholesterol sharing a common export mechanism.


Assuntos
Proteínas de Transporte , Esfingosina , Proteínas de Transporte/metabolismo , Esfingosina/metabolismo , Esteróis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Colesterol/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Lisossomos/metabolismo
2.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34350967

RESUMO

The spatiotemporal cellular distribution of lysosomes depends on active transport mainly driven by microtubule motors such as kinesins and dynein. Different protein complexes attach these molecular motors to their vesicular cargo. TMEM55B (also known as PIP4P1), as an integral lysosomal membrane protein, is a component of such a complex that mediates the retrograde transport of lysosomes by establishing interactions with the cytosolic scaffold protein JIP4 (also known as SPAG9) and dynein-dynactin. Here, we show that TMEM55B and its paralog TMEM55A (PIP4P2) are S-palmitoylated proteins that are lipidated at multiple cysteine residues. Mutation of all cysteines in TMEM55B prevents S-palmitoylation and causes retention of the mutated protein in the Golgi. Consequently, non-palmitoylated TMEM55B is no longer able to modulate lysosomal positioning and the perinuclear clustering of lysosomes. Additional mutagenesis of the dileucine-based lysosomal sorting motif in non-palmitoylated TMEM55B leads to partial missorting to the plasma membrane instead of retention in the Golgi, implicating a direct effect of S-palmitoylation on the adaptor protein-dependent sorting of TMEM55B. Our data suggest a critical role for S-palmitoylation in the trafficking of TMEM55B and TMEM55B-dependent lysosomal positioning.


Assuntos
Lipoilação , Lisossomos , Complexo de Golgi/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Transporte Proteico
3.
Trends Cell Biol ; 30(6): 452-466, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32413315

RESUMO

Lysosomes are of major importance for the regulation of cellular cholesterol homeostasis. Food-derived cholesterol and cholesterol esters contained within lipoproteins are delivered to lysosomes by endocytosis. From the lysosomal lumen, cholesterol is transported to the inner surface of the lysosomal membrane through the glycocalyx; this shuttling requires Niemann-Pick C (NPC) 1 and NPC2 proteins. The lysosomal membrane proteins lysosomal-associated membrane protein (LAMP)-2 and lysosomal integral membrane protein (LIMP)-2/SCARB2 also bind cholesterol. LAMP-2 may serve as a cholesterol reservoir, whereas LIMP-2, like NPC1, is able to transport cholesterol through a transglycocalyx tunnel. Contact sites and fusion events between lysosomes and other organelles mediate the distribution of cholesterol. Lysosomal cholesterol content is sensed thereby regulating mammalian target of rapamycin complex (mTORC)-dependent signaling. This review summarizes our understanding of the major steps in cholesterol handling from the moment it enters the lysosome until it leaves this compartment.


Assuntos
Colesterol/metabolismo , Lisossomos/metabolismo , Animais , Endocitose , Humanos , Metabolismo dos Lipídeos , Modelos Biológicos , Transdução de Sinais
4.
Nat Commun ; 10(1): 3521, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387993

RESUMO

The intracellular transport of cholesterol is subject to tight regulation. The structure of the lysosomal integral membrane protein type 2 (LIMP-2, also known as SCARB2) reveals a large cavity that traverses the molecule and resembles the cavity in SR-B1 that mediates lipid transfer. The detection of cholesterol within the LIMP-2 structure and the formation of cholesterol-like inclusions in LIMP-2 knockout mice suggested the possibility that LIMP2 transports cholesterol in lysosomes. We present results of molecular modeling, crosslinking studies, microscale thermophoresis and cell-based assays that support a role of LIMP-2 in cholesterol transport. We show that the cavity in the luminal domain of LIMP-2 can bind and deliver exogenous cholesterol to the lysosomal membrane and later to lipid droplets. Depletion of LIMP-2 alters SREBP-2-mediated cholesterol regulation, as well as LDL-receptor levels. Our data indicate that LIMP-2 operates in parallel with Niemann Pick (NPC)-proteins, mediating a slower mode of lysosomal cholesterol export.


Assuntos
Antígenos CD36/metabolismo , LDL-Colesterol/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Receptores Depuradores/metabolismo , Animais , Antígenos CD36/genética , Células CHO , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cricetulus , Fibroblastos , Técnicas de Inativação de Genes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Gotículas Lipídicas/metabolismo , Proteínas de Membrana Lisossomal/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteína C1 de Niemann-Pick , Domínios Proteicos , RNA Interferente Pequeno/metabolismo , Receptores Depuradores/genética
5.
Nat Commun ; 8(1): 1908, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29199275

RESUMO

Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) contributes to endosomal and lysosomal function. LIMP-2 deficiency is associated with neurological abnormalities and kidney failure and, as an acid glucocerebrosidase receptor, impacts Gaucher and Parkinson's diseases. Here we report a crystal structure of a LIMP-2 luminal domain dimer with bound cholesterol and phosphatidylcholine. Binding of these lipids alters LIMP-2 from functioning as a glucocerebrosidase-binding monomer toward a dimeric state that preferentially binds anionic phosphatidylserine over neutral phosphatidylcholine. In cellular uptake experiments, LIMP-2 facilitates transport of phospholipids into murine fibroblasts, with a strong substrate preference for phosphatidylserine. Taken together, these biophysical and cellular studies define the structural basis and functional importance of a form of LIMP-2 for lipid trafficking. We propose a model whereby switching between monomeric and dimeric forms allows LIMP-2 to engage distinct binding partners, a mechanism that may be shared by SR-BI and CD36, scavenger receptor proteins highly homologous to LIMP-2.


Assuntos
Antígenos CD36/metabolismo , Colesterol/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Receptores Depuradores/metabolismo , Animais , Cristalografia por Raios X , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos , Fosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA