Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
N Engl J Med ; 382(21): 2005-2011, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32220208

RESUMO

BACKGROUND: Long-term care facilities are high-risk settings for severe outcomes from outbreaks of Covid-19, owing to both the advanced age and frequent chronic underlying health conditions of the residents and the movement of health care personnel among facilities in a region. METHODS: After identification on February 28, 2020, of a confirmed case of Covid-19 in a skilled nursing facility in King County, Washington, Public Health-Seattle and King County, aided by the Centers for Disease Control and Prevention, launched a case investigation, contact tracing, quarantine of exposed persons, isolation of confirmed and suspected cases, and on-site enhancement of infection prevention and control. RESULTS: As of March 18, a total of 167 confirmed cases of Covid-19 affecting 101 residents, 50 health care personnel, and 16 visitors were found to be epidemiologically linked to the facility. Most cases among residents included respiratory illness consistent with Covid-19; however, in 7 residents no symptoms were documented. Hospitalization rates for facility residents, visitors, and staff were 54.5%, 50.0%, and 6.0%, respectively. The case fatality rate for residents was 33.7% (34 of 101). As of March 18, a total of 30 long-term care facilities with at least one confirmed case of Covid-19 had been identified in King County. CONCLUSIONS: In the context of rapidly escalating Covid-19 outbreaks, proactive steps by long-term care facilities to identify and exclude potentially infected staff and visitors, actively monitor for potentially infected patients, and implement appropriate infection prevention and control measures are needed to prevent the introduction of Covid-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Transmissão de Doença Infecciosa , Controle de Infecções/métodos , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Instituições de Cuidados Especializados de Enfermagem , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Busca de Comunicante , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Surtos de Doenças , Transmissão de Doença Infecciosa/prevenção & controle , Feminino , Pessoal de Saúde , Humanos , Assistência de Longa Duração , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/mortalidade , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , SARS-CoV-2 , Washington/epidemiologia
2.
Am J Public Health ; 111(5): 867-875, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33734847

RESUMO

Laboratory diagnostics play an essential role in pandemic preparedness. In January 2020, the first US case of COVID-19 was confirmed in Washington State. At the same time, the Washington State Public Health Laboratory (WA PHL) was in the process of building upon and initiating innovative preparedness activities to strengthen laboratory testing capabilities, operations, and logistics. The response efforts of WA PHL, in conjunction with the Centers for Disease Control and Prevention, to the COVID-19 outbreak in Washington are described herein-from the initial detection of severe acute respiratory syndrome coronavirus 2 through the subsequent 2 months.Factors that contributed to an effective laboratory response are described, including preparing early to establish testing capacity, instituting dynamic workforce solutions, advancing information management systems, refining laboratory operations, and leveraging laboratory partnerships. We also report on the challenges faced, successful steps taken, and lessons learned by WA PHL to respond to COVID-19.The actions taken by WA PHL to mount an effective public health response may be useful for US laboratories as they continue to respond to the COVID-19 pandemic and may help inform current and future laboratory pandemic preparedness activities.


Assuntos
Teste para COVID-19 , COVID-19 , Laboratórios , Objetivos Organizacionais , Desenvolvimento de Programas , Saúde Pública , COVID-19/epidemiologia , COVID-19/prevenção & controle , Centers for Disease Control and Prevention, U.S. , Humanos , Sistemas de Informação , Estados Unidos , Washington/epidemiologia
3.
MMWR Morb Mortal Wkly Rep ; 69(12): 339-342, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32214083

RESUMO

On February 28, 2020, a case of coronavirus disease (COVID-19) was identified in a woman resident of a long-term care skilled nursing facility (facility A) in King County, Washington.* Epidemiologic investigation of facility A identified 129 cases of COVID-19 associated with facility A, including 81 of the residents, 34 staff members, and 14 visitors; 23 persons died. Limitations in effective infection control and prevention and staff members working in multiple facilities contributed to intra- and interfacility spread. COVID-19 can spread rapidly in long-term residential care facilities, and persons with chronic underlying medical conditions are at greater risk for COVID-19-associated severe disease and death. Long-term care facilities should take proactive steps to protect the health of residents and preserve the health care workforce by identifying and excluding potentially infected staff members and visitors, ensuring early recognition of potentially infected patients, and implementing appropriate infection control measures.


Assuntos
Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Surtos de Doenças , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Instituições Residenciais , Instituições de Cuidados Especializados de Enfermagem , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Doença Crônica , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/prevenção & controle , Surtos de Doenças/prevenção & controle , Evolução Fatal , Feminino , Humanos , Controle de Infecções/normas , Assistência de Longa Duração , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/mortalidade , Pneumonia Viral/prevenção & controle , Fatores de Risco , Washington/epidemiologia , Adulto Jovem
4.
MMWR Morb Mortal Wkly Rep ; 69(13): 377-381, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32240128

RESUMO

Older adults are susceptible to severe coronavirus disease 2019 (COVID-19) outcomes as a consequence of their age and, in some cases, underlying health conditions (1). A COVID-19 outbreak in a long-term care skilled nursing facility (SNF) in King County, Washington that was first identified on February 28, 2020, highlighted the potential for rapid spread among residents of these types of facilities (2). On March 1, a health care provider at a second long-term care skilled nursing facility (facility A) in King County, Washington, had a positive test result for SARS-CoV-2, the novel coronavirus that causes COVID-19, after working while symptomatic on February 26 and 28. By March 6, seven residents of this second facility were symptomatic and had positive test results for SARS-CoV-2. On March 13, CDC performed symptom assessments and SARS-CoV-2 testing for 76 (93%) of the 82 facility A residents to evaluate the utility of symptom screening for identification of COVID-19 in SNF residents. Residents were categorized as asymptomatic or symptomatic at the time of testing, based on the absence or presence of fever, cough, shortness of breath, or other symptoms on the day of testing or during the preceding 14 days. Among 23 (30%) residents with positive test results, 10 (43%) had symptoms on the date of testing, and 13 (57%) were asymptomatic. Seven days after testing, 10 of these 13 previously asymptomatic residents had developed symptoms and were recategorized as presymptomatic at the time of testing. The reverse transcription-polymerase chain reaction (RT-PCR) testing cycle threshold (Ct) values indicated large quantities of viral RNA in asymptomatic, presymptomatic, and symptomatic residents, suggesting the potential for transmission regardless of symptoms. Symptom-based screening in SNFs could fail to identify approximately half of residents with COVID-19. Long-term care facilities should take proactive steps to prevent introduction of SARS-CoV-2 (3). Once a confirmed case is identified in an SNF, all residents should be placed on isolation precautions if possible (3), with considerations for extended use or reuse of personal protective equipment (PPE) as needed (4).


Assuntos
Doenças Assintomáticas/epidemiologia , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/epidemiologia , Surtos de Doenças , Pneumonia Viral/epidemiologia , Instituições de Cuidados Especializados de Enfermagem , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Feminino , Humanos , Assistência de Longa Duração , Masculino , Pandemias , SARS-CoV-2 , Washington/epidemiologia
5.
Foodborne Pathog Dis ; 16(7): 513-523, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30969140

RESUMO

The Washington State Department of Health Public Health Laboratories (WAPHL) has tested 11,501 samples between 2007 and 2017 for a foodborne disease using a combination of identification, serotyping, and subtyping tools. During this period there were 8037 total clinical and environmental samples tested by pulsed-field gel electrophoresis (PFGE), including 512 foodborne disease clusters and 2176 PFGE patterns of Salmonella enterica subsp. enterica. There were 2446 Shiga toxin-producing Escherichia coli samples tested by PFGE, which included 158 foodborne disease clusters and 1174 PFGE patterns. There were 332 samples of Listeria monocytogenes tested by PFGE, including 35 foodborne disease clusters and 104 PFGE patterns. Sources linked to outbreaks included raw chicken, unpasteurized dairy products, various produce types, and undercooked beef among others. As next-generation sequencing (NGS) replaces PFGE, the impact of this transition is expected to be significant given the enhanced cluster detection power NGS brings. The measures presented here will be a reference baseline in future years.


Assuntos
Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Laboratórios/normas , Listeria monocytogenes/classificação , Escherichia coli Shiga Toxigênica/classificação , Análise por Conglomerados , DNA Bacteriano/análise , Surtos de Doenças , Eletroforese em Gel de Campo Pulsado , Doenças Transmitidas por Alimentos/epidemiologia , Humanos , Saúde Pública , Sorotipagem , Washington/epidemiologia
6.
J Clin Microbiol ; 52(10): 3549-57, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25031439

RESUMO

Although pertussis disease is vaccine preventable, Washington State experienced a substantial rise in pertussis incidence beginning in 2011. By June 2012, the reported cases reached 2,520 (37.5 cases per 100,000 residents), a 1,300% increase compared with the same period in 2011. We assessed the molecular epidemiology of this statewide epidemic using 240 isolates collected from case patients reported from 19 of 39 Washington counties during 2012 to 2013. The typing methods included pulsed-field gel electrophoresis (PFGE), multilocus variable number tandem repeat analysis (MLVA), multilocus sequence typing (MLST), and pertactin gene (prn) mutational analysis. Using the scheme PFGE-MLVA-MLST-prn mutations-Prn deficiency, the 240 isolates comprised 65 distinct typing profiles. Thirty-one PFGE types were found, with the most common types, CDC013 (n = 51), CDC237 (n = 44), and CDC002 (n = 42), accounting for 57% of them. Eleven MLVA types were observed, mainly comprising type 27 (n = 183, 76%). Seven MLST types were identified, with the majority of the isolates typing as prn2-ptxP3-ptxA1-fim3-1 (n = 157, 65%). Four different prn mutations accounted for the 76% of isolates exhibiting pertactin deficiency. PFGE provided the highest discriminatory power (D = 0.87) and was found to be a more powerful typing method than MLVA and MLST combined (D = 0.67). This study provides evidence for the continued predominance of MLVA 27 and prn2-ptxP3-ptxA1 alleles, along with the reemergence of the fim3-1 allele. Our results indicate that the Bordetella pertussis population causing this epidemic was diverse, with a few molecular types predominating. The PFGE, MLVA, and MLST profiles were consistent with the predominate types circulating in the United States and other countries. For prn, several mutations were present in multiple molecular types.


Assuntos
Bordetella pertussis/classificação , Bordetella pertussis/genética , Epidemias , Variação Genética , Coqueluche/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bordetella pertussis/isolamento & purificação , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Tipagem Molecular , Estados Unidos , Washington/epidemiologia , Adulto Jovem
7.
Sci Transl Med ; 13(595)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33941621

RESUMO

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has gravely affected societies around the world. Outbreaks in different parts of the globe have been shaped by repeated introductions of new viral lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral genomes from Washington State (USA) to characterize how the spread of SARS-CoV-2 in Washington State in early 2020 was shaped by differences in timing of mitigation strategies across counties and by repeated introductions of viral lineages into the state. In addition, we show that the increase in frequency of a potentially more transmissible viral variant (614G) over time can potentially be explained by regional mobility differences and multiple introductions of 614G but not the other variant (614D) into the state. At an individual level, we observed evidence of higher viral loads in patients infected with the 614G variant. However, using clinical records data, we did not find any evidence that the 614G variant affects clinical severity or patient outcomes. Overall, this suggests that with regard to D614G, the behavior of individuals has been more important in shaping the course of the pandemic in Washington State than this variant of the virus.


Assuntos
COVID-19 , Genoma Viral , SARS-CoV-2 , COVID-19/virologia , Surtos de Doenças , Humanos , Filogenia , SARS-CoV-2/genética , Washington/epidemiologia
8.
Science ; 370(6516): 571-575, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32913002

RESUMO

After its emergence in Wuhan, China, in late November or early December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus rapidly spread globally. Genome sequencing of SARS-CoV-2 allows the reconstruction of its transmission history, although this is contingent on sampling. We analyzed 453 SARS-CoV-2 genomes collected between 20 February and 15 March 2020 from infected patients in Washington state in the United States. We find that most SARS-CoV-2 infections sampled during this time derive from a single introduction in late January or early February 2020, which subsequently spread locally before active community surveillance was implemented.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Genoma Viral , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Teorema de Bayes , COVID-19 , Humanos , Funções Verossimilhança , Pandemias , Filogenia , SARS-CoV-2 , Washington/epidemiologia
9.
medRxiv ; 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33024981

RESUMO

The rapid spread of SARS-CoV-2 has gravely impacted societies around the world. Outbreaks in different parts of the globe are shaped by repeated introductions of new lineages and subsequent local transmission of those lineages. Here, we sequenced 3940 SARS-CoV-2 viral genomes from Washington State to characterize how the spread of SARS-CoV-2 in Washington State (USA) was shaped by differences in timing of mitigation strategies across counties, as well as by repeated introductions of viral lineages into the state. Additionally, we show that the increase in frequency of a potentially more transmissible viral variant (614G) over time can potentially be explained by regional mobility differences and multiple introductions of 614G, but not the other variant (614D) into the state. At an individual level, we see evidence of higher viral loads in patients infected with the 614G variant. However, using clinical records data, we do not find any evidence that the 614G variant impacts clinical severity or patient outcomes. Overall, this suggests that at least to date, the behavior of individuals has been more important in shaping the course of the pandemic than changes in the virus.

10.
medRxiv ; 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511596

RESUMO

Following its emergence in Wuhan, China, in late November or early December 2019, the SARS-CoV-2 virus has rapidly spread throughout the world. On March 11, 2020, the World Health Organization declared Coronavirus Disease 2019 (COVID-19) a pandemic. Genome sequencing of SARS-CoV-2 strains allows for the reconstruction of transmission history connecting these infections. Here, we analyze 346 SARS-CoV-2 genomes from samples collected between 20 February and 15 March 2020 from infected patients in Washington State, USA. We found that the large majority of SARS-CoV-2 infections sampled during this time frame appeared to have derived from a single introduction event into the state in late January or early February 2020 and subsequent local spread, strongly suggesting cryptic spread of COVID-19 during the months of January and February 2020, before active community surveillance was implemented. We estimate a common ancestor of this outbreak clade as occurring between 18 January and 9 February 2020. From genomic data, we estimate an exponential doubling between 2.4 and 5.1 days. These results highlight the need for large-scale community surveillance for SARS-CoV-2 introductions and spread and the power of pathogen genomics to inform epidemiological understanding.

11.
Genome Announc ; 2(3)2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24903882

RESUMO

Next-generation sequencing is being evaluated for use with food-borne illness investigations, especially when the outbreak strains produce patterns that cannot be discriminated from non-outbreak strains using conventional procedures. Here we report complete genome assemblies of two Salmonella enterica serovar Heidelberg strains with a common pulsed-field gel electrophoresis pattern isolated during an outbreak investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA