Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557779

RESUMO

BACKGROUND AND AIMS: In the classical form of α1-antitrypsin deficiency, a misfolded variant α1-antitrypsin Z accumulates in the endoplasmic reticulum of liver cells and causes liver cell injury by gain-of-function proteotoxicity in a sub-group of affected homozygotes but relatively little is known about putative modifiers. Here, we carried out genomic sequencing in a uniquely affected family with an index case of liver failure and 2 homozygous siblings with minimal or no liver disease. Their sequences were compared to sequences in well-characterized cohorts of homozygotes with or without liver disease, and then candidate sequence variants were tested for changes in the kinetics of α1-antitrypsin variant Z degradation in iPS-derived hepatocyte-like cells derived from the affected siblings themselves. APPROACH AND RESULTS: Specific variants in autophagy genes MTMR12 and FAM134A could each accelerate the degradation of α1-antitrypsin variant Z in cells from the index patient, but both MTMR12 and FAM134A variants were needed to slow the degradation of α1-antitrypsin variant Z in cells from a protected sib, indicating that inheritance of both variants is needed to mediate the pathogenic effects of hepatic proteotoxicity at the cellular level. Analysis of homozygote cohorts showed that multiple patient-specific variants in proteostasis genes are likely to explain liver disease susceptibility at the population level. CONCLUSIONS: These results validate the concept that genetic variation in autophagy function can determine susceptibility to liver disease in α1-antitrypsin deficiency and provide evidence that polygenic mechanisms and multiple patient-specific variants are likely needed for proteotoxic pathology.

2.
Gastroenterology ; 163(1): 270-284, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35301011

RESUMO

BACKGROUND & AIMS: Insulin signaling is known to regulate essential proteostasis mechanisms. METHODS: The analyses here examined effects of insulin signaling in the PiZ mouse model of α1-antitrypsin deficiency in which hepatocellular accumulation and proteotoxicity of the misfolded α1-antitrypsin Z variant (ATZ) causes liver fibrosis and cancer. RESULTS: We first studied the effects of breeding PiZ mice to liver-insulin-receptor knockout (LIRKO) mice (with hepatocyte-specific insulin-receptor gene disruption). The results showed decreased hepatic ATZ accumulation and liver fibrosis in PiZ x LIRKO vs PiZ mice, with reversal of those effects when we bred PiZ x LIRKO mice onto a FOXO1-deficient background. Increased intracellular degradation of ATZ mediated by autophagy was identified as the likely mechanism for diminished hepatic proteotoxicity in PiZ x LIRKO mice and the converse was responsible for enhanced toxicity in PiZ x LIRKO x FOXO1-KO animals. Transcriptomic studies showed major effects on oxidative phosphorylation and autophagy genes, and significant induction of peroxisome proliferator-activated-receptor-γ-coactivator-1α (PGC1α) expression in PiZ-LIRKO mice. Because PGC1α plays a key role in oxidative phosphorylation, we further investigated its effects on ATZ proteostasis in our ATZ-expressing mammalian cell model. The results showed PGC1α overexpression or activation enhances autophagic ATZ degradation. CONCLUSIONS: These data implicate suppression of autophagic ATZ degradation by down-regulation of PGC1α as one mechanism by which insulin signaling exacerbates hepatic proteotoxicity in PiZ mice, and identify PGC1α as a novel target for development of new human α1-antitrypsin deficiency liver disease therapies.


Assuntos
Insulina , Fígado , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Deficiência de alfa 1-Antitripsina , Animais , Insulina/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Mamíferos/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/patologia
3.
J Biol Chem ; 290(50): 29742-57, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26494620

RESUMO

Recent studies have shown that autophagy mitigates the pathological effects of proteinopathies in the liver, heart, and skeletal muscle but this has not been investigated for proteinopathies that affect the lung. This may be due at least in part to the lack of an animal model robust enough for spontaneous pathological effects from proteinopathies even though several rare proteinopathies, surfactant protein A and C deficiencies, cause severe pulmonary fibrosis. In this report we show that the PiZ mouse, transgenic for the common misfolded variant α1-antitrypsin Z, is a model of respiratory epithelial cell proteinopathy with spontaneous pulmonary fibrosis. Intracellular accumulation of misfolded α1-antitrypsin Z in respiratory epithelial cells of the PiZ model resulted in activation of autophagy, leukocyte infiltration, and spontaneous pulmonary fibrosis severe enough to elicit functional restrictive deficits. Treatment with autophagy enhancer drugs or lung-directed gene transfer of TFEB, a master transcriptional activator of the autophagolysosomal system, reversed these proteotoxic consequences. We conclude that this mouse is an excellent model of respiratory epithelial proteinopathy with spontaneous pulmonary fibrosis and that autophagy is an important endogenous proteostasis mechanism and an attractive target for therapy.


Assuntos
Autofagia/efeitos dos fármacos , Terapia Genética , Deficiência de alfa 1-Antitripsina/terapia , Animais , Autofagia/genética , Modelos Animais de Doenças , Células Epiteliais/patologia , Pulmão/patologia , Camundongos , Deficiência de alfa 1-Antitripsina/tratamento farmacológico , Deficiência de alfa 1-Antitripsina/patologia
4.
Cell Mol Gastroenterol Hepatol ; 17(6): 1007-1024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38336172

RESUMO

BACKGROUND & AIMS: In the classic form of α1-antitrypsin deficiency (ATD), the misfolded α1-antitrypsin Z (ATZ) variant accumulates in the endoplasmic reticulum (ER) of liver cells. A gain-of-function proteotoxic mechanism is responsible for chronic liver disease in a subgroup of homozygotes. Proteostatic response pathways, including conventional endoplasmic reticulum-associated degradation and autophagy, have been proposed as the mechanisms that allow cellular adaptation and presumably protection from the liver disease phenotype. Recent studies have concluded that a distinct lysosomal pathway called endoplasmic reticulum-to-lysosome completely supplants the role of the conventional macroautophagy pathway in degradation of ATZ. Here, we used several state-of-the-art approaches to characterize the proteostatic responses more fully in cellular systems that model ATD. METHODS: We used clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing coupled to a cell selection step by fluorescence-activated cell sorter to perform screening for proteostasis genes that regulate ATZ accumulation and combined that with selective genome editing in 2 other model systems. RESULTS: Endoplasmic reticulum-associated degradation genes are key early regulators and multiple autophagy genes, from classic as well as from ER-to-lysosome and other newly described ER-phagy pathways, participate in degradation of ATZ in a manner that is temporally regulated and evolves as ATZ accumulation persists. Time-dependent changes in gene expression are accompanied by specific ultrastructural changes including dilation of the ER, formation of globular inclusions, budding of autophagic vesicles, and alterations in the overall shape and component parts of mitochondria. CONCLUSIONS: Macroautophagy is a critical component of the proteostasis response to cellular ATZ accumulation and it becomes more important over time as ATZ synthesis continues unabated. Multiple subtypes of macroautophagy and nonautophagic lysosomal degradative pathways are needed to respond to the high concentrations of misfolded protein that characterizes ATD and these pathways are attractive candidates for genetic variants that predispose to the hepatic phenotype.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Lisossomos , Macroautofagia , Proteostase , Deficiência de alfa 1-Antitripsina , alfa 1-Antitripsina , Deficiência de alfa 1-Antitripsina/patologia , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/metabolismo , Humanos , Lisossomos/metabolismo , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/genética , Retículo Endoplasmático/metabolismo , Sistemas CRISPR-Cas , Autofagia/genética , Edição de Genes
5.
Cell Death Differ ; 26(3): 455-469, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29795336

RESUMO

Intrahepatocytic accumulation of misfolded α1-antitrypsin Z variant (ATZ) is responsible for liver disease in some individuals with α1-antitrypsin deficiency (ATD), characterized by fibrosis/cirrhosis and predisposition to carcinogenesis. Previous results showing that accumulation of ATZ in model systems activates the NFκB signaling pathway have led us to hypothesize that downstream targets of NFκB are elements of a proteostasis response network for this type of proteinopathy. Here we show that only a subset of downstream targets within the NFκB transcriptomic repertoire are activated in model systems of this proteinopathy. Breeding of the PiZ mouse model of ATD to two different mouse models with NFκB deficiency led to greater intrahepatocytic accumulation of ATZ, more severe hepatic fibrosis, decreased autophagy and hyperproliferation of hepatocytes with massive ATZ inclusions. Specific downstream targets of NFκB could be implicated in each pathological effect. These results suggest a new role for NFκB signaling in which specific downstream targets of this pathway mediate an integrated program of proteostatic responses designed to mitigate the pathologic effects of proteinopathy, including autophagic disposal of misfolded protein, degradation of collagen and prevention of hyperproliferation.


Assuntos
NF-kappa B/metabolismo , Deficiência de alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/patologia , Animais , Autofagia , Regulação para Baixo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células HeLa , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/biossíntese , NF-kappa B/deficiência , NF-kappa B/genética , Dobramento de Proteína , Proteostase , Transcriptoma , alfa 1-Antitripsina , Deficiência de alfa 1-Antitripsina/genética
6.
PLoS One ; 14(1): e0209748, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30673724

RESUMO

The classical form of α1-antitrypsin deficiency (ATD) is characterized by intracellular accumulation of the misfolded variant α1-antitrypsin Z (ATZ) and severe liver disease in some of the affected individuals. In this study, we investigated the possibility of discovering novel therapeutic agents that would reduce ATZ accumulation by interrogating a C. elegans model of ATD with high-content genome-wide RNAi screening and computational systems pharmacology strategies. The RNAi screening was utilized to identify genes that modify the intracellular accumulation of ATZ and a novel computational pipeline was developed to make high confidence predictions on repurposable drugs. This approach identified glibenclamide (GLB), a sulfonylurea drug that has been used broadly in clinical medicine as an oral hypoglycemic agent. Here we show that GLB promotes autophagic degradation of misfolded ATZ in mammalian cell line models of ATD. Furthermore, an analog of GLB reduces hepatic ATZ accumulation and hepatic fibrosis in a mouse model in vivo without affecting blood glucose or insulin levels. These results provide support for a drug discovery strategy using simple organisms as human disease models combined with genetic and computational screening methods. They also show that GLB and/or at least one of its analogs can be immediately tested to arrest the progression of human ATD liver disease.


Assuntos
Glibureto/farmacologia , alfa 1-Antitripsina/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Descoberta de Drogas , Glibureto/análogos & derivados , Glibureto/uso terapêutico , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Camundongos Transgênicos , Interferência de RNA , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/tratamento farmacológico , Deficiência de alfa 1-Antitripsina/genética
7.
PLoS One ; 9(1): e87260, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498058

RESUMO

The classical form of α1-antitrypsin deficiency (ATD) is associated with hepatic fibrosis and hepatocellular carcinoma. It is caused by the proteotoxic effect of a mutant secretory protein that aberrantly accumulates in the endoplasmic reticulum of liver cells. Recently we developed a model of this deficiency in C. elegans and adapted it for high-content drug screening using an automated, image-based array scanning. Screening of the Library of Pharmacologically Active Compounds identified fluphenazine (Flu) among several other compounds as a drug which reduced intracellular accumulation of mutant α1-antitrypsin Z (ATZ). Because it is representative of the phenothiazine drug class that appears to have autophagy enhancer properties in addition to mood stabilizing activity, and can be relatively easily re-purposed, we further investigated its effects on mutant ATZ. The results indicate that Flu reverses the phenotypic effects of ATZ accumulation in the C. elegans model of ATD at doses which increase the number of autophagosomes in vivo. Furthermore, in nanomolar concentrations, Flu enhances the rate of intracellular degradation of ATZ and reduces the cellular ATZ load in mammalian cell line models. In the PiZ mouse model Flu reduces the accumulation of ATZ in the liver and mediates a decrease in hepatic fibrosis. These results show that Flu can reduce the proteotoxicity of ATZ accumulation in vivo and, because it has been used safely in humans, this drug can be moved rapidly into trials for liver disease due to ATD. The results also provide further validation for drug discovery using C. elegans models that can be adapted to high-content drug screening platforms and used together with mammalian cell line and animal models.


Assuntos
Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Flufenazina/farmacologia , Deficiência de alfa 1-Antitripsina/prevenção & controle , Animais , Animais Geneticamente Modificados , Antipsicóticos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Células CHO , Caenorhabditis elegans/genética , Cricetinae , Cricetulus , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Células Hep G2 , Humanos , Immunoblotting , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Mutação , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Análise de Sobrevida , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/metabolismo
8.
Methods Enzymol ; 499: 33-54, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21683248

RESUMO

In the classical form of alpha-1-antitrypsin (AT) deficiency, a mutant protein accumulates in the endoplasmic reticulum of liver cells, causing hepatic fibrosis and hepatocellular carcinoma by a gain-of-toxic function mechanism. Autophagy is specifically activated by the accumulation of mutant AT, and the autophagy plays a key role in intracellular degradation of this mutant protein. Our recent study indicates that an autophagy enhancer drug can decrease the hepatic load of mutant AT and reduce hepatic fibrosis in a mouse model of AT deficiency. In this chapter, we discuss what is known about autophagy in AT deficiency and methods for characterizing autophagy in cell lines and animal models.


Assuntos
Autofagia/fisiologia , Deficiência de alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/patologia , Animais , Autofagia/genética , Eletroforese , Células HeLa , Humanos , Immunoblotting , Fígado/metabolismo , Fígado/ultraestrutura , Camundongos , Microscopia Imunoeletrônica , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/genética
9.
J Clin Invest ; 121(5): 1930-4, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21505264

RESUMO

α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z-expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%-98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z-expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals.


Assuntos
Fígado/metabolismo , Mutação , alfa 1-Antitripsina/genética , Alanina Transaminase/sangue , Albuminas/metabolismo , Animais , Bilirrubina/química , Fibrose/metabolismo , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transgenes , Transplante Homólogo
10.
Science ; 329(5988): 229-32, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20522742

RESUMO

In the classical form of alpha1-antitrypsin (AT) deficiency, a point mutation in AT alters the folding of a liver-derived secretory glycoprotein and renders it aggregation-prone. In addition to decreased serum concentrations of AT, the disorder is characterized by accumulation of the mutant alpha1-antitrypsin Z (ATZ) variant inside cells, causing hepatic fibrosis and/or carcinogenesis by a gain-of-toxic function mechanism. The proteasomal and autophagic pathways are known to mediate degradation of ATZ. Here we show that the autophagy-enhancing drug carbamazepine (CBZ) decreased the hepatic load of ATZ and hepatic fibrosis in a mouse model of AT deficiency-associated liver disease. These results provide a basis for testing CBZ, which has an extensive clinical safety profile, in patients with AT deficiency and also provide a proof of principle for therapeutic use of autophagy enhancers.


Assuntos
Autofagia/efeitos dos fármacos , Carbamazepina/farmacologia , Cirrose Hepática/tratamento farmacológico , Fígado/metabolismo , Deficiência de alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/metabolismo , Animais , Carbamazepina/administração & dosagem , Carbamazepina/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fagossomos/efeitos dos fármacos , Fagossomos/ultraestrutura , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Solubilidade , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/patologia
11.
J Biol Chem ; 282(38): 27769-80, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17635928

RESUMO

In the classical form of alpha(1)-antitrypsin deficiency, a mutant protein accumulates in a polymerized form in the endoplasmic reticulum (ER) of liver cells causing liver damage and carcinogenesis by a gain-of-toxic function mechanism. Recent studies have indicated that the accumulation of mutant alpha(1)-antitrypsin Z in the ER specifically activates the autophagic response but not the unfolded protein response and that autophagy plays a critical role in disposal of insoluble alpha(1)-antitrypsin Z. In this study, we used genomic analysis of the liver in a novel transgenic mouse model with inducible expression to screen for changes in gene expression that would potentially define how the liver responds to accumulation of this mutant protein. There was no unfolded protein response. Of several distinct gene expression profiles, marked up-regulation of regulator of G signaling (RGS16) was particularly notable. RGS16 did not increase when model systems were exposed to classical inducers of ER stress, including tunicamycin and calcium ionophore, or when a nonpolymerogenic alpha(1)-antitrypsin mutant accumulated in the ER. RGS16 was up-regulated in livers from patients with alpha(1)-antitrypsin deficiency, and the degree of up-regulation correlated with the hepatic levels of insoluble alpha(1)-antitrypsin Z protein. Taken together, these results indicate that expression of RGS16 is an excellent marker for the distinct form of "ER stress" that occurs in alpha(1)-antitrypsin deficiency, presumably determined by the aggregation-prone properties of the mutant protein that characterizes the deficiency.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas RGS/metabolismo , alfa 1-Antitripsina/química , Animais , Células HeLa , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Mutação , Conformação Proteica , Desnaturação Proteica , Transdução de Sinais
12.
J Biol Chem ; 281(7): 4467-76, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16365039

RESUMO

Mutant alpha(1)-antitrypsin Z (alpha(1)-ATZ) protein, which has a tendency to form aggregated polymers as it accumulates within the endoplasmic reticulum of the liver cells, is associated with the development of chronic liver injury and hepatocellular carcinoma in hereditary alpha(1)-antitrypsin (alpha(1)-AT) deficiency. Previous studies have suggested that efficient intracellular degradation of alpha(1)-ATZ is correlated with protection from liver disease in alpha(1)-AT deficiency and that the ubiquitin-proteasome system accounts for a major route, but not the sole route, of alpha(1)-ATZ disposal. Yet another intracellular degradation system, autophagy, has also been implicated in the pathophysiology of alpha(1)-AT deficiency. To provide genetic evidence for autophagy-mediated disposal of alpha(1)-ATZ, here we used cell lines deleted for the Atg5 gene that is necessary for initiation of autophagy. In the absence of autophagy, the degradation of alpha(1)-ATZ was retarded, and the characteristic cellular inclusions of alpha(1)-ATZ accumulated. In wild-type cells, colocalization of the autophagosomal membrane marker GFP-LC3 and alpha(1)-ATZ was observed, and this colocalization was enhanced when clearance of autophagosomes was prevented by inhibiting fusion between autophagosome and lysosome. By using a transgenic mouse with liver-specific inducible expression of alpha(1)-ATZ mated to the GFP-LC3 mouse, we also found that expression of alpha(1)-ATZ in the liver in vivo is sufficient to induce autophagy. These data provide definitive evidence that autophagy can participate in the quality control/degradative pathway for alpha(1)-ATZ and suggest that autophagic degradation plays a fundamental role in preventing toxic accumulation of alpha(1)-ATZ.


Assuntos
Autofagia , Corpos de Inclusão/metabolismo , alfa 1-Antitripsina/metabolismo , Animais , Proteína 5 Relacionada à Autofagia , Células Cultivadas , Retículo Endoplasmático/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/fisiologia , Mutação
13.
J Biol Chem ; 280(47): 39002-15, 2005 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-16183649

RESUMO

In alpha(1)-antitrypsin (alpha1AT) deficiency, a polymerogenic mutant form of the secretory glycoprotein alpha1AT, alpha1ATZ, is retained in the endoplasmic reticulum (ER) of liver cells. It is not yet known how this results in liver injury in a subgroup of deficient individuals and how the remainder of deficient individuals escapes liver disease. One possible explanation is that the "susceptible" subgroup is unable to mount the appropriate protective cellular responses. Here we examined the effect of mutant alpha1ATZ on several potential protective signaling pathways by using cell lines with inducible expression of mutant alpha1AT as well as liver from transgenic mice with liver-specific inducible expression of mutant alpha1AT. The results show that ER retention of polymerogenic mutant alpha1ATZ does not result in an unfolded protein response (UPR). The UPR can be induced in the presence of alpha1ATZ by tunicamycin excluding the possibility that the pathway has been disabled. In striking contrast, ER retention of nonpolymerogenic alpha1AT mutants does induce the UPR. These results indicate that the machinery responsible for activation of the UPR can distinguish the physical characteristics of proteins that accumulate in the ER in such a way that it can respond to misfolded but not relatively ordered polymeric structures. Accumulation of mutant alpha1ATZ does activate specific signaling pathways, including caspase-12 in mouse, caspase-4 in human, NFkappaB, and BAP31, a profile that was distinct from that activated by nonpolymerogenic alpha1AT mutants.


Assuntos
Retículo Endoplasmático/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Animais , Caspase 12 , Caspases/metabolismo , Caspases Iniciadoras , Linhagem Celular , Ativação Enzimática , Células HeLa , Humanos , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , NF-kappa B/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Tunicamicina/farmacologia , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA