Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(24): 10967-10979, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38832535

RESUMO

A series of iso-carbamate complexes have been synthesized by the reaction of [SnII(OiPr)2] or [SnII(OtBu)2] with either aryl or alkyl isocyanates, ONC-R (R = 2,4,6-trimethylphenyl (Mes), 2,6-diisopropylphenyl (Dipp), isopropyl (iPr), cyclohexyl (Cy) and tert-butyl (tBu)). In the case of aryl isocyanates, mono-insertion occurs to form structurally characterized complexes [Sn{κ2-N,O-R-NC(OiPr)O}(µ-OiPr)]2 (1: R = Mes, 2: R = Dipp) and [Sn{κ2-N,O-R-NC(OtBu)O}(µ-OtBu)]2 (3: R = Mes, 4: R = Dipp). The complicated solution-state chemistry of these species has been explored using 1H DOSY experiments. In contrast, reactions of tin(II) alkoxides with alkyl isocyanates result in the formation of bis-insertion products [Sn{κ2-N,O-R-NC(OiPr)O}2] (5: R = iPr, and 6: R = Cy) and [Sn{κ2-N,O-R-NC(OtBu)O}2] (7: R = iPr, 8: R = Cy), of which complexes 6-8 have also been structurally characterized. 1H NMR studies show that the reaction of tBu-NCO with either [Sn(OiPr)2] or [Sn(OtBu)2] results in a reversible mono-insertion. Variable-temperature 2D 1H-1H exchange spectroscopy (VT-2D-EXSY) was used to determine the rate of exchange between free tBu-NCO and the coordinated tBu-iso-carbamate ligand for the {OiPr} alkoxide complex, as well as the activation energy (Ea = 92.2 ± 0.8 kJ mol-1), enthalpy (ΔH‡ = 89.4 ± 0.8 kJ mol-1), and entropy (ΔS‡ = 12.6 ± 2.9 J mol-1 K-1) for the process [Sn(OiPr)2] + tBu-NCO ↔ [Sn{κ2-N,O-tBu-NC(OiPr)O}(OiPr)]. Attempts to form Sn(II) alkyl carbonates by the insertion of CO2 into either [Sn(OiPr)2] or [Sn(OtBu)2] proved unsuccessful. However, 119Sn{1H} NMR spectroscopy of the reaction of excess CO2 with [Sn(OiPr)2] reveals the presence of a new Sn(II) species, i.e., [(iPrO)Sn(O2COiPr)], VT-2D-EXSY (1H) of which confirms the reversible alkyl carbonate formation (Ea = 70.3 ± 13.0 kJ mol-1; ΔH‡ = 68.0 ± 1.3 kJ mol-1 and ΔS‡ = -8.07 ± 2.8 J mol-1 K-1).

2.
Inorg Chem ; 62(37): 15310-15319, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37672789

RESUMO

The potassium diamidoalumanyl, [K{Al(SiNDipp)}]2 (SiNDipp = {CH2SiMe2NDipp}2), reacts with the terminal B-O bonds of pinacolato boron esters, ROBpin (R = Me, i-Pr), and B(OMe)3 to provide potsassium (alkoxy)borylaluminate derivatives, [K{Al(SiNDipp)(OR)(Bpin)}]n (R = Me, n = 2; R = i-Pr, n = ∞) and [K{Al(SiNDipp)(OMe)(B(OMe)2)}]∞, comprising Al-B σ bonds. An initial assay of the reactivity of these species with the heteroallene molecules, N,N'-diisopropylcarbodiimide and CO2, highlights the kinetic inaccessibility of their Al-B bonds; only decomposition at high temperature is observed with the carbodiimide, whereas CO2 preferentially inserts into the Al-O bond of [K{Al(SiNDipp)(OMe)(Bpin)}]2 to provide a dimeric methyl carbonate species. Treatment of the acyclic dimethoxyboryl species, however, successfully liberates a terminal alumaboronic ester featuring trigonal N2Al-BO2 coordination environments at both boron and aluminum.

3.
Chem Rev ; 121(20): 12784-12965, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34450005

RESUMO

This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.


Assuntos
Metais , Catálise
4.
Angew Chem Int Ed Engl ; 62(3): e202213670, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36382996

RESUMO

Ionic compounds containing sodium cations are notable for their stability and resistance to redox reactivity unless highly reducing electrical potentials are applied. Here we report that treatment of a low oxidation state {Mg2 Na2 } species with non-reducible organic bases induces the spontaneous and completely selective extrusion of sodium metal and oxidation of the MgI centers to the more conventional MgII state. Although these processes are also characterized by a structural reorganisation of the initially chelated diamide spectator ligand, computational quantum chemical studies indicate that intramolecular electron transfer is abetted by the frontier molecular orbitals (HOMO/LUMO) of the {Mg2 Na2 } ensemble, which arise exclusively from the 3s valence atomic orbitals of the constituent sodium and magnesium atoms.

5.
Angew Chem Int Ed Engl ; 61(18): e202200305, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35212128

RESUMO

Hydrocarbon-soluble ß-diketiminato phenylcalcium derivatives, which display various modes of Ca-µ2 -Ph-Ca bridging, are accessible from reactions of Ph2 Hg and [(BDI)CaH]2 . Although the resultant compounds are inert toward the C-H bonds of benzene, they yield selective and uncatalyzed biaryl formation when reacted with readily available aryl bromides.

6.
J Am Chem Soc ; 143(42): 17851-17856, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34652134

RESUMO

Sodium reduction of [{SiNDipp}Mg] [{SiNDipp} = {CH2SiMe2N(Dipp)}2; Dipp = 2,6-i-Pr2C6H3] provides the Mg(I) species, [{SiNDipp}MgNa]2, in which the long Mg-Mg bond (>3.2 Å) is augmented by persistent Na-aryl interactions. Computational assessment indicates that this molecule is best considered to comprise a contiguous tetrametallic core, a viewpoint borne out by its reaction with CO, which results in ethynediolate formation mediated by the dissimilar metal centers.

7.
Chemistry ; 27(60): 14971-14980, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34403562

RESUMO

The seven-membered cyclic potassium alumanyl species, [{SiNMes }AlK]2 [{SiNMes }={CH2 SiMe2 N(Mes)}2 ; Mes=2,4,6-Me3 C6 H2 ], which adopts a dimeric structure supported by flanking K-aryl interactions, has been isolated either by direct reduction of the iodide precursor, [{SiNMes }AlI], or in a stepwise manner via the intermediate dialumane, [{SiNMes }Al]2 . Although the intermediate dialumane has not been observed by reduction of a Dipp-substituted analogue (Dipp=2,6-i-Pr2 C6 H3 ), partial oxidation of the potassium alumanyl species, [{SiNDipp }AlK]2 , where {SiNDipp }={CH2 SiMe2 N(Dipp)}2 , provided the extremely encumbered dialumane [{SiNDipp }Al]2 . [{SiNDipp }AlK]2 reacts with toluene by reductive activation of a methyl C(sp3 )-H bond to provide the benzyl hydridoaluminate, [{SiNDipp }AlH(CH2 Ph)]K, and as a nucleophile with BPh3 and RN=C=NR (R=i-Pr, Cy) to yield the respective Al-B- and Al-C-bonded potassium aluminaborate and alumina-amidinate products. The dimeric structure of [{SiNDipp }AlK]2 can be disrupted by partial or complete sequestration of potassium. Equimolar reactions with 18-crown-6 result in the corresponding monomeric potassium alumanyl, [{SiNDipp }Al-K(18-cr-6)], which provides a rare example of a direct Al-K contact. In contrast, complete encapsulation of the potassium cation of [{SiNDipp }AlK]2 , either by an excess of 18-cr-6 or 2,2,2-cryptand, allows the respective isolation of bright orange charge-separated species comprising the 'free' [{SiNDipp }Al]- alumanyl anion. Density functional theory (DFT) calculations performed on this moiety indicate HOMO-LUMO energy gaps in the of order 200-250 kJ mol-1 .

8.
Inorg Chem ; 60(22): 17083-17093, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34704441

RESUMO

In an attempt to tailor precursors for application in the deposition of phase pure SnO, we have evaluated a series of tin (1-6) ureide complexes. The complexes were successfully synthesized by employing N,N'-trialkyl-functionalized ureide ligands, in which features such as stability, volatility, and decomposition could be modified with variation of the substituents on the ureide ligand in an attempt to find the complex with the ideal electronic, steric, or coordinative properties, which determine the fate of the final products. The tin(II) ureide complexes 1-6 were synthesized by direct reaction [Sn{NMe2}2] with aryl and alkyl isocyanates in a 1:2 molar ratio. All the complexes were characterized by NMR spectroscopy as well as elemental analysis and, where applicable, thermogravimetric (TG) analysis. The single-crystal X-ray diffraction studies of 2, 3, 4, and 6 revealed that the complexes crystallize in the monoclinic space group P2(1)/n (2 and 4) or in the triclinic space group P-1 (3 and 6) as monomers. Reaction with phenyl isocyanate results in the formation of the bimetallic species 5, which crystallizes in the triclinic space group P-1, a consequence of incomplete insertion into the Sn-NMe2 bonds, versus mesityl isocyanate, which produces a monomeric double insertion product, 6, under the same conditions, indicating a difference in reactivity between phenyl isocyanate and mesityl isocyanate with respect to insertion into Sn-NMe2 bonds. The metal centers in these complexes are all four-coordinate, displaying either distorted trigonal bipyramidal or trigonal bipyramidal geometries. The steric influence of the imido-ligand substituent has a clear effect on the coordination mode of the ureide ligands, with complexes 2 and 6, which contain the cyclohexyl and mesityl ligands, displaying κ2-O,N coordination modes, whereas κ2-N,N' coordination modes are observed for the sterically bulkier tert-butyl and adamantyl derivatives, 3 and 4. The thermogravimetric analysis of the complexes 3 and 4 exhibited excellent physicochemical properties with clean single-step curves and low residual masses in their TG analyses suggesting their potential utility of these systems as MOCVD and ALD precursors.

9.
Angew Chem Int Ed Engl ; 60(26): 14390-14393, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33899319

RESUMO

Copper-alumanyl complexes, [LCu-Al(SiNDipp )], where L=carbene=NHCiPr (N,N'-diisopropyl-4,5-dimethyl-2-ylidene) and Me2 CAAC (1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethyl-pyrrolidin-2-ylidene) and featuring unsupported Al-Cu bonds, have been prepared. Divergent reactivity observed with carbodiimides and CO2 implies an ambiphilicity in the Cu-Al interaction that is dependent on the identity of the carbene co-ligand.

10.
Chemistry ; 26(13): 2954-2966, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31899846

RESUMO

The dehydrocoupling of silanes and alcohols mediated by heavier alkaline-earth catalysts, [Ae{N(SiMe3 )2 }2 ⋅(THF)2 ] (I-III) and [Ae{CH(SiMe3 )2 }2 ⋅(THF)2 ], (IV-VI) (Ae=Ca, Sr, Ba) is described. Primary, secondary, and tertiary alcohols were coupled to phenylsilane or diphenylsilane, whereas tertiary silanes are less tolerant towards bulky substrates. Some control over reaction selectivity towards mono-, di-, or tri-substituted silylether products was achieved through alteration of reaction stoichiometry, conditions, and catalyst. The ferrocenyl silylether, FeCp(C5 H4 SiPh(OBn)2 ) (2), was prepared and fully characterized from the ferrocenylsilane, FeCp(C5 H4 SiPhH2 ) (1), and benzyl alcohol using barium catalysis. Stoichiometric experiments suggested a reaction manifold involving the formation of Ae-alkoxide and hydride species, and a series of dimeric Ae-alkoxides [(Ph3 CO)Ae(µ2 -OCPh3 )Ae(THF)] (3 a-c, Ae=Ca, Sr, Ba) were isolated and fully characterized. Mechanistic experiments suggested a complex reaction mechanism involving dimeric or polynuclear active species, whose kinetics are highly dependent on variables such as the identity and concentration of the precatalyst, silane, and alcohol. Turnover frequencies increase on descending Group 2 of the periodic table, with the barium precatalyst III displaying an apparent first-order dependence in both silane and alcohol, and an optimum catalyst loading of 3 mol % Ba, above which activity decreases. With precatalyst III in THF, ferrocene-containing poly- and oligosilylethers with ferrocene pendent to- (P1-P4) or as a constituent (P5, P6) of the main polymer chain were prepared from 1 or Fe(C5 H4 SiPhH2 )2 (4) with diols 1,4-(HOCH2 )2 -(C6 H4 ) and 1,4-(CH(CH3 )OH)2 -(C6 H4 ), respectively. The resultant materials were characterized by NMR spectroscopy, gel permeation chromatography (GPC) and DOSY NMR spectroscopy, with estimated molecular weights in excess of 20,000 Da for P1 and P4. The iron centers display reversible redox behavior and thermal analysis showed P1 and P5 to be promising precursors to magnetic ceramic materials.

11.
Inorg Chem ; 59(18): 13679-13689, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32886501

RESUMO

Density functional theory (DFT) calculations demonstrate that the previously reported reaction of [(BDI)Mg-n-Bu] (BDI = HC{(Me)CN-Dipp}2; Dipp = 2,6-diisopropylphenyl) with the silaborane Me2PhSi-Bpin provides the magnesium silanide derivative [(BDI)MgSiMe2Ph], through the intermediacy of a short-lived silyl-pinacolato-organoborate species. The nucleophilic character of the resultant silanide anion is assayed through a series of reactions with RN═C═NR (R = i-Pr, Cy, t-Bu) and p-tolN═C═N-p-tol. When they are performed in a strict 1:1 stoichiometry, all four reactions result in silyl addition to the carbodiimide carbon center and formation of the corresponding ß-diketiminato magnesium silaamidinate complexes. Although the performance of the reaction of [(BDI)MgSiMe2Ph] with 2 equiv of p-tolylcarbodiimide also results in the formation of a silaamidinate anion, the second equivalent is observed to engage with the nucleophilic γ-methine carbon of the BDI ligand to provide a tripodal diimino-iminoamidate ligand. This behavior is judged to be a consequence of the enhanced electrophilicity of the N-aryl-substituted carbodiimide reagent, a viewpoint supported by a further reaction with the N-isopropyl silaamidinate complex [(BDI)Mg(i-PrN)2CSiMe2Ph]. This latter reaction not only provides an identical diimino-iminoamidate ligand but also results in 2-fold insertion of p-tolN═C═N-p-tol into a Mg-N bond between the magnesium center and the silaamidinate anion.

12.
Angew Chem Int Ed Engl ; 59(32): 13628-13632, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32401402

RESUMO

Oxoborane carbamate and carboxylate analogues result from the in situ trapping of [BO2 ]- produced by elimination of 2,3-dimethyl-2-butene from a pinacolatoboryl anion.

13.
Angew Chem Int Ed Engl ; 59(3): 1232-1237, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31738472

RESUMO

A molecular calcium hydride effects the two electron reduction of polyaromatic hydrocarbons, including naphthalene (E0 =-3.1 V).

14.
Angew Chem Int Ed Engl ; 59(10): 3928-3932, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31830364

RESUMO

A seven-membered N,N'-heterocyclic potassium alumanyl nucleophile is introduced and utilised in the metathetical synthesis of Mg-Al and Ca-Al bonded derivatives. Both species have been characterised by experimental and theoretical means, allowing a rationalisation of the greater reactivity of the heavier group 2 species implied by an initial assay of their reactivity.

15.
Inorg Chem ; 58(4): 2784-2797, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30715864

RESUMO

A family of 12 zinc(II) thoureide complexes, of the general form [{L}ZnMe], [{L}Zn{N(SiMe3)2}], and [{L}2Zn], have been synthesized by direct reaction of the thiourea pro-ligands iPrN(H)CS(NMe2) H[L1], CyN(H)CS(NMe2) H[L3], tBuN(H)CS(NMe2) H[L2], and MesN(H)CS(NMe2) H[L4] with either ZnMe2 (1:1) or Zn{N(SiMe3)2}2 (1:1 and 2:1) and characterized by elemental analysis, NMR spectroscopy, and thermogravimetric analysis (TGA). The molecular structures of complexes [{L1}ZnMe]2 (1), [{L2}ZnMe]2] (2), [{L3}ZnMe]∞ (3), [{L4}ZnMe]2] (4), [{L1}Zn{N(SiMe3)2}]2 (5), [{L2}Zn{N(SiMe3)2}]2 (6), [{L3}Zn{N(SiMe3)2}]2] (7), [{L4}Zn{N(SiMe3)2}]2] (8), [{L1}2Zn]2 (9), and [{L4}2Zn]2 (12) have been unambiguously determined using single crystal X-ray diffraction studies. Thermogravimetric analysis has been used to assess the viability of complexes 1-12 as single source precursors for the formation of ZnS. On the basis of TGA data compound 9 was investigated for its utility as a single source precursor to deposit ZnS films on silica-coated glass and crystalline silicon substrates at 150, 200, 250, and 300 °C using an aerosol assisted chemical vapor deposition (AACVD) method. The resultant films were confirmed to be hexagonal-ZnS by Raman spectroscopy and PXRD, and the surface morphologies were examined by SEM and AFM analysis. Thin films deposited from (9) at 250 and 300 °C were found to be comprised of more densely packed and more highly crystalline ZnS than films deposited at lower temperatures. The electronic properties of the ZnS thin films were deduced by UV-Vis spectroscopy to be very similar and displayed absorption behavior and band gap (Eg = 3.711-3.772 eV) values between those expected for bulk cubic-ZnS (Eg = 3.54 eV) and hexagonal-ZnS (Eg = 3.91 eV).

16.
Angew Chem Int Ed Engl ; 57(33): 10688-10691, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-29873441

RESUMO

Reactions of readily accessible magnesium-centered pinacolatoboryl nucleophiles with [(Ph2 B)2 O] result in B-O bond activation of the diphenylborinic anhydride. Although [pinBBPh2 ] is apparently generated when the nucleophilic boron unit is derived in situ from a magnesium diboranate, it cannot be isolated owing to its onward derivatization by a further {Bpin}- equivalent. A reaction with a terminal magnesium boryl species similarly provides a boryloxide byproduct. In this case, however, the unsymmetrical B(sp2 )-B(sp3 ) diborane may be intercepted as its DMAP adduct.

17.
Angew Chem Int Ed Engl ; 57(47): 15500-15504, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30289589

RESUMO

ß-Diketiminato (BDI) calcium alkyl derivatives undergo hydrogenolysis with H2 to regenerate [(BDI)CaH]2 , allowing the catalytic hydrogenation of a wide range of 1-alkenes and norbornene under very mild conditions (2 bar H2 , 298 K). The reactions are deduced to take place with the retention of the dimeric structures of the calcium hydrido-alkyl and alkyl intermediates via a well-defined sequence of Ca-H/C=C insertion and Ca-C hydrogenation events. This latter deduction is strongly supported by DFT calculations (B3PW91) performed on the 1-hexene/H2 system, which also indicates that the hydrogenation transition states display features which discriminate them from a classical σ-bond metathesis mechanism. In particular, NBO analysis identifies a strong second order interaction between the filled α-methylene sp3 orbital of the n-hexyl chain and the σ* orbital of the H2 molecule, signifying that the H-H bond is broken by what is effectively the nucleophilic displacement of hydride by the organic substituent.

18.
J Am Chem Soc ; 139(29): 10036-10054, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28640639

RESUMO

Reactions of ß-diketiminato magnesium and calcium hydrides with 1 atm of CO result in a reductive coupling process to produce the corresponding derivatives of the cis-ethenediolate dianion. Computational (DFT) analysis of this process mediated by Ca, Sr, and Ba highlights a common mechanism and a facility for the reaction that is enhanced by increasing alkaline earth atomic weight. Reaction of CO with PhSiH3 in the presence of the magnesium or calcium hydrides results in catalytic reduction to methylsilane and methylene silyl ether products, respectively. These reactions are proposed to ensue via the interception of initially formed group 2 formyl intermediates, an inference which is confirmed by a DFT analysis of the magnesium-centered reaction. The computational results identify the rate-determining process, requiring traversal of a 33.9 kcal mol-1 barrier, as a Mg-H/C-O σ-bond metathesis reaction, associated with the ultimate cleavage of the C-O bond. The carbonylation reactivity is extended to a variety of magnesium and calcium amides. With primary amido complexes, which for calcium include a derivative of the parent [NH2]- anion, CO insertion is facile and ensues with subsequent nitrogen-to-carbon migration of hydrogen to yield a variety of dinuclear and, in one case, trinuclear formamidate species. The generation of initial carbenic carbamoyl intermediates is strongly implicated through the isolation of the CO insertion product of a magnesium N-methylanilide derivative. These observations are reinforced by a DFT analysis of the calcium-centered reaction with aniline, which confirms the exothermicity of the formamidate formation (ΔH = -67.7 kcal mol-1). Stoichiometric reduction of the resultant magnesium and calcium formamidates with pinacolborane results in the synthesis of the corresponding N-borylated methylamines. This takes place via a sequence of reactions initiated through the generation of amidatohydridoborate intermediates and a cascade of reactivity that is analogous to that previously reported for the deoxygenative hydroboration of organic isocyanates catalyzed by the same magnesium hydride precatalyst. Although a sequence of amine formylation and deoxygenation may be readily envisaged for the catalytic utilization of CO as a C1 source in the production of methylamines, our observations demonstrate that competitive amine-borane dehydrocoupling is too facile under the conditions of 1 atm of CO employed.

19.
Inorg Chem ; 56(10): 5976-5983, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28448129

RESUMO

The ß-diketiminato magnesium amidoboranes [HC{(Me)CNDipp}2Mg(NMe2BH2NMe2·BH3)] and [HC{(t-Bu)CNDipp}2Mg(NMe2·BH3)] are readily converted to the corresponding derivatives of the [HB(C6F5)3]- anion by treatment with B(C6F5)3. The bis(borohydride) derivatives of the heaviest alkaline-earth elements, strontium and barium, may be similarly synthesized by reaction of strontium or barium dimethylamidoboranes and B(C6F5)3 and by metathesis reactions of either SrI2 or BaI2 and 2 molar equiv of K(HB(C6F5)3). The strontium and barium compounds have been fully characterized in solution and in the solid state as the respective tris(diethyl ether) and tetrakis(tetrahydrofuran) adducts. The magnesium compound [HC{(Me)CNDipp}2Mg(HB(C6F5)3)] has been applied to the catalytic hydroboration of i-PrN═C═N-i-Pr with HBpin. In contrast to carbodiimide hydroboration catalyzed by the corresponding ß-diketiminato magnesium hydride, which results in the exclusive production of the monoborylated amidine, use of the [HB(C6F5)3]- derivative provides the product of bis-borylation, the aminal H2C(N{Bpin}i-Pr)2, under mild conditions. A series of stoichiometric reactions highlight that, while this reactivity is likely to be primarily magnesium mediated, B(C6F5)3 plays a vital role both in the delivery of reactive hydride and through the Lewis acid activation of the heteroallene substrate and various reactive intermediates.

20.
Chem Soc Rev ; 45(4): 972-88, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26797470

RESUMO

The past decade has witnessed some remarkable advances in our appreciation of the structural and reaction chemistry of the heavier alkaline earth (Ae = Mg, Ca, Sr, Ba) elements. Derived from complexes of these metals in their immutable +2 oxidation state, a broad and widely applicable catalytic chemistry has also emerged, driven by considerations of cost and inherent low toxicity. The considerable adjustments incurred to ionic radius and resultant cation charge density also provide reactivity with significant mechanistic and kinetic variability as group 2 is descended. In an attempt to place these advances in the broader context of contemporary main group element chemistry, this review focusses on the developing state of the art in both multiple bond heterofunctionalisation and cross coupling catalysis. We review specific advances in alkene and alkyne hydroamination and hydrophosphination catalysis and related extensions of this reactivity that allow the synthesis of a wide variety of acyclic and heterocyclic small molecules. The use of heavier alkaline earth hydride derivatives as pre-catalysts and intermediates in multiple bond hydrogenation, hydrosilylation and hydroboration is also described along with the emergence of these and related reagents in a variety of dehydrocoupling processes that allow that facile catalytic construction of Si-C, Si-N and B-N bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA