Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 210(0): 429-449, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30004542

RESUMO

Exquisite control of the electrodeposition of metal films and coatings is critical to a number of high technology and manufacturing industries, delivering functionality as diverse as anti-corrosion and anti-wear coatings, electronic device interconnects and energy storage. The frequent involvement of more than one metal motivates the capability to control, maintain and monitor spatial disposition of the component metals, whether as multilayers, alloys or composites. Here we investigate the deposition, evolution and dissolution of single and two-component metal layers involving Ag, Cu, and Sn on Au substrates immersed in the deep eutectic solvent (DES) Ethaline. During galvanostatically controlled stripping of the metals from two-component systems the potential signature in simultaneous thickness electrochemical potential (STEP) measurements provides identification of the dissolving metal; coulometric assay of deposition efficiency is an additional outcome. When combined with quartz crystal microbalance (QCM) frequency responses, the mass change : charge ratio provides oxidation state data; this is significant for Cu in the high chloride environment provided by Ethaline. The spatial distribution (solvent penetration and external roughness) of multiple components in bilayer systems is provided by specular neutron reflectivity (NR). Significantly, the use of the recently established event mode capability shortens the observational timescale of the NR measurements by an order of magnitude, permitting dynamic in situ observations on practically useful timescales. Ag,Cu bilayers of both spatial configurations give identical STEP signatures indicating that, despite the extremely low layer porosity, thermodynamic constraints (rather than spatial accessibility) dictate reactivity; thus, surprisingly, Cu dissolves first in both instances. Sn penetrates the Au electrode on the timescale of deposition; this can be prevented by interposing a layer of either Ag or Cu.

2.
Langmuir ; 33(27): 6826-6837, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28627897

RESUMO

We report the electrochromic properties of a polymeric nanocomposite prepared by potentiodynamic deposition of transition-metal complex [Ni(3-Mesalen)], designated as [1], in the presence of TiO2 nanoparticles (NPs) with an average size of 9.7 ± 1.1 nm. Entrapment of TiO2 NPs in the poly[1] matrix was confirmed by several techniques. The nanocomposite TiO2@poly[1] films showed similar electrochemical responses to the original (nanoparticle-free) poly[1] films, but with higher electroactive surface coverages (Γ), showing the advantage of the nanocomposite preparation. The results indicated that the electronic structure of poly[1] was retained in the nanocomposite; nonetheless, a lower ε value was obtained for the charge-transfer band of the former, revealing superior stability of the nanocomposite for ligand high oxidation states. The TiO2@poly[1] nanocomposite showed interesting color changes, from yellow (reduced state) to green and russet (oxidized states), with enhanced electrochemical stability, demonstrated by a charge loss of only 7.3% over ca. 10 000 redox cycles surpassing the original polymer film stability: the loss of electroactivity is a factor of ca. 2 less than for pristine poly[1]. Furthermore, an enhancement of 16.7% in the optical modulation (ΔOD = 0.48) was also observed for the nanocomposite, confirming the benefit of TiO2 incorporation into the EC properties of the original polymer film.

3.
Faraday Discuss ; 199: 75-99, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28540379

RESUMO

Electroactive films based on conducting polymers have numerous potential applications, but practical devices frequently require a combination of properties not met by a single component. This has prompted an extension to composite materials, notably those in which particulates are immobilised within a polymer film. Irrespective of the polymer and the intended application, film wetting is important: by various means, it facilitates transport processes - of electronic charge, charge-balancing counter ions ("dopant") and analyte/reactant molecules - and motion of polymer segments. While film solvent content and transfer have been widely studied for pristine polymer films exposed to molecular solvents, extension to non-conventional solvents (such as ionic liquids) or to composite films has been given much less attention. Here we consider such cases based on polyaniline films. We explore two factors, the nature of the electrolyte (solvent and film-permeating ions) and the effect of introducing particulate species into the film. In the first instance, we compare film behaviours when exposed to a conventional protic solvent (water) with an aprotic ionic liquid (Ethaline) and the intermediate case of a protic ionic liquid (Oxaline). Secondly, we explore the effect of inclusion of physically diverse particulates: multi-walled carbon nanotubes, graphite or molybdenum dioxide. We use electrochemistry to control and monitor the film redox state and change therein, and acoustic wave measurements to diagnose rheologically vs. gravimetrically determined response. The outcomes provide insights of relevance to future practical applications, including charge/discharge rates and cycle life for energy storage devices, "salt" transfer in water purification technologies, and the extent of film "memory" of previous environments when sequentially exposed to different media.

4.
RSC Adv ; 14(31): 22504-22512, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39021455

RESUMO

A nanostructured hybrid material based on mesoporous silica nanoparticles (MCM-41) functionalized with chitosan and a fluorescent dye (dansylglycine), designated MCM-41@Ch@DnsGly, was synthesized and characterized with a view to its application for the visualization of latent fingerprints. These nanoparticles were applied as latent fingerprint developers for marks on surfaces of diverse chemical composition, topography, optical characteristics, and spatially variant nature, typical of forensically challenging evidence. For quality assessment of the enhanced fingermarks, the developed images were analyzed holistically using the UK Home Office scale, forensic protocols and, in terms of their constituent features (minutiae), using forensic software. Across a substantive collection of marks deposited on chemically diverse surfaces and subject to complex environmental and temporal histories, 94% of the enhanced images presented sufficient minutiae for comparison with model dactyloscopy images. This novel nanomaterial presents enhanced performance with significant promise for superior exploitation by forensic practitioners in the acquisition and analysis of crime scene evidence.

5.
J Phys Chem C Nanomater Interfaces ; 127(38): 18891-18901, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37791096

RESUMO

Aluminum-based batteries are a promising alternative to lithium-ion as they are considered to be low-cost and more friendly to the environment. In addition, aluminum is abundant and evenly distributed across the globe. Many studies and Al battery prototypes use imidazolium chloroaluminate electrolytes because of their good rheological and electrochemical performance. However, these electrolytes are very expensive, and so cost is a barrier to industrial scale-up. A urea-based electrolyte, AlCl3:Urea, has been proposed as an alternative, but its performance is relatively poor because of its high viscosity and low conductivity. This type of electrolyte has become known as an ionic liquid analogue (ILA). In this contribution, we proposed two Lewis base salt precursors, namely, guanidine hydrochloride and acetamidine hydrochloride, as alternatives to the urea-based ILA. We present the study of three ILAs, AlCl3:Guanidine, AlCl3:Acetamidine, and AlCl3:Urea, examining their rheology, electrochemistry, NMR spectra, and coin-cell performance. The room temperature viscosities of both AlCl3:Guanidine (52.9 cP) and AlCl3:Acetamidine (76.0 cP) were significantly lower than those of the urea-based liquid (240.9 cP), and their conductivities were correspondingly higher. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) showed that all three electrolytes exhibit reversible deposition/dissolution of Al, but LSV indicated that AlCl3:Guanidine and AlCl3:Acetamidine ILAs have superior anodic stability compared to the AlCl3:Urea electrolyte, as evidenced by anodic potential limits of +2.23 V for both AlCl3:Guanidine and AlCl3:Acetamidine and +2.12 V for AlCl3:Urea. Coin-cell tests showed that both AlCl3:Guanidine and AlCl3:Acetamidine ILA exhibit a higher Coulombic efficiency (98 and 97%, respectively) than the AlCl3:Urea electrolyte system, which has an efficiency of 88% after 100 cycles at 60 mA g-1. Overall, we show that AlCl3:Guanidine and AlCl3:Acetamidine have superior performance when compared to AlCl3:Urea, while maintaining low economic cost. We consider these to be valuable alternative materials for Al-based battery systems, especially for commercial production.

6.
J Phys Chem C Nanomater Interfaces ; 127(28): 13866-13876, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37492190

RESUMO

At the core of the aluminum (Al) ion battery is the liquid electrolyte, which governs the underlying chemistry. Optimizing the rheological properties of the electrolyte is critical to advance the state of the art. In the present work, the chloroaluminate electrolyte is made by reacting AlCl3 with a recently reported acetamidinium chloride (Acet-Cl) salt in an effort to make a more performant liquid electrolyte. Using AlCl3:Acet-Cl as a model electrolyte, we build on our previous work, which established a new method for extracting the ionic conductivity from fitting voltammetric data, and in this contribution, we validate the method across a range of measurement parameters in addition to highlighting the model electrolytes' conductivity relative to current chloroaluminate liquids. Specifically, our method allows the extraction of both the ionic conductivity and voltammetric data from a single, simple, and routine measurement. To bring these results in the context of current methods, we compare our results to two independent standard conductivity measurement techniques. Several different measurement parameters (potential scan rate, potential excursion, temperature, and composition) are examined. We find that our novel method can resolve similar trends in conductivity to conventional methods, but typically, the values are a factor of two higher. The values from our method, on the other hand, agree closely with literature values reported elsewhere. Importantly, having now established the approach for our new method, we discuss the conductivity of AlCl3:Acet-Cl-based formulations. These electrolytes provide a significant improvement (5-10× higher) over electrolytes made from similar Lewis base salts (e.g., urea or acetamide). The Lewis base salt precursors have a low economic cost compared to state-of-the-art imidazolium-based salts and are non-toxic, which is advantageous for scale-up. Overall, this is a noteworthy step at designing cost-effective and performant liquid electrolytes for Al-ion battery applications.

7.
Phys Chem Chem Phys ; 14(24): 8653-61, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22618668

RESUMO

Spatially selective electrodeposition of poly-3,4-ethylenedioxythiophene (PEDOT) thin films on metallic surfaces is shown to be an effective means of visualizing latent fingerprints. The technique exploits the fingerprint deposit as an insulating mask, such that electrochemical processes (here, polymer deposition) may only take place on deposit-free areas of the surface between the ridges of the fingerprint deposit; the end result is a negative image of the fingermark. Use of a surfactant (sodium dodecylsulphate, SDS) to solubilise the EDOT monomer allows the use of an aqueous electrolyte. Electrochemical (coulometric) data provide a total assay of deposited material, yielding spatially averaged film thicknesses, which are commensurate with substantive filling of the trenches between fingerprint deposit ridges, but not overfilling to the extent that the ridge detail is covered. This is confirmed by optical microscopy and AFM images, which show continuous polymer deposition within the trenches and good definition at the ridge edges. Stainless steel substrates treated in this manner and transferred to background electrolyte (aqueous sulphuric acid) showed enhanced fingerprints when the contrast between the polymer background and fingerprint deposit was optimised using the electrochromic properties of the PEDOT films. The facility of the method to reveal fingerprints of various ages and subjected to plausible environmental histories was demonstrated. Comparison of this enhancement methodology with commonly used fingerprint enhancement methods (dusting with powder, application of wet powder suspensions and cyanoacrylate fuming) showed promising performance in selected scenarios of practical interest.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Dermatoglifia , Polímeros/química , Eletroquímica , Galvanoplastia , Propriedades de Superfície
8.
Forensic Sci Int ; 333: 111195, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35144222

RESUMO

We present a detailed mechanistic study of the PD process, focused on the nucleation and growth dynamics of silver particles on fingermarks deposited on a paper surface, from macroscopic (whole fingermark) and microscopic (particle level) perspectives. Conceptually, we separate the outcomes into aspects that precede exposure of the exhibit (relating to the reagent formulation), that relate to the development of the fingermark during immersion in the PD formulation, and that characterise the fully developed mark subsequent to immersion. Initially, dynamic light scattering shows the silver particles in solution to be relatively monodisperse, with a peak particle size of 880 nm. In the second instance, the issue is whether the particles grow to final size in solution then deposit on the surface or deposit as relatively small particles then grow on the surface. To the naked eye, silver deposition is evident after 2 min; corresponding optical profilometry images show evidence of surface-bound particles (mean diameter 2.13 µm) after 30 s. Across the development time (15 min) the particle population density (2.36 ( ± 0.52) x 105 cm-2), is independent of time. During this time, the mean particle diameter increases with the square root of development time to 16.09 µm. The dynamics suggest essentially instantaneous (shorter than observation time) nucleation and diffusionally controlled growth. Surface analysis (EDS) shows the expected high (low) levels of silver on ridge detail (in furrows) but no evidence of iron (from the redox component of the formulation) entrapment at any point on the surface.


Assuntos
Dermatoglifia , Prata , Indicadores e Reagentes
9.
Anal Chem ; 83(14): 5696-707, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21635008

RESUMO

Comprehensive exploration of the viscoelastic properties of polyaniline films exposed to aqueous perchloric acid has been made as a function of applied potential (E), temperature (T), and mechanical oscillation frequency (f = ω/2π) using high-frequency acoustic wave resonators. The outcomes are expressed in terms of storage and loss shear modulus signatures, G'(E, T, ω) and G″(E, T, ω). Surprisingly, these are barely sensitive to potential, through which both polymer charge and solvation are manipulated, and only modestly sensitive to temperature. In contrast, the response to timescale is dramatic. Using the principle of time-temperature superposition, G' and G″ at different temperatures and frequencies (time scales) can each be placed on master relaxation curves. Models developed for mechanical properties of bulk polymers at low frequency were applied to these thin film responses at high frequency. These include the Williams-Landel-Ferry model, the activation model, and the Rouse-Zimm model based, respectively, on concepts of free volume, thermal activation, and relaxation. Each of the models could be applied with physically reasonable outcomes in terms of the relevant parameters (thermal expansion coefficient, glass transition temperature, and activation enthalpy). G' and G″ values are correlated with solvent content. The enthalpy change for solvent entry is small, positive and relatively independent of polymer charge state, all of which contrast sharply with the behavior of thiophene-based conducting polymers in organic solvents.

10.
Phys Chem Chem Phys ; 13(12): 5373-82, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21331434

RESUMO

Electrochemical quartz crystal microbalance experiments were used to study the classical Belousov-Zhabotinskii (BZ) homogeneous oscillating system. This system involves 2 × 10(-3) M Ce(III), 0.28 M malonic acid and 0.063 M bromate as the main initial components in 1 M sulfuric acid solution. The gold-evaporated electrodes on a 10 MHz AT-cut quartz crystal were used for potentiometric and amperometric studies while the changes in crystal frequency provided mass data. Under open-circuit conditions, during the BZ reaction, oscillations of the gold electrode potential in the range ca. 0.8 to 1.07 V (SCE) with a period about 80 s occurred. They were accompanied by periodic 10-15 ng [i.e. ca. 45-70 ng cm(-2)] changes in the electrode mass. At more positive potentials a decrease in electrode mass occurred, while the mass increased at more negative potentials. At a constant applied electrode potential, corresponding to either the upper or the lower potential limit attained under open-circuit conditions, periodic pulses of cathodic current occurred and were accompanied by mass changes. A continuous decrease in the electrode mass occurred at 1.06 V. A detailed examination of the gold electrode behavior in the solutions containing individual components of the system using cyclic voltammetry and quartz crystal microgravimetry provided the information needed to interpret the mass changes that occur in the complete system. No significant changes in the electrode mass occurred in sulfuric acid solution in the potential range where current and mass oscillations take place in the full BZ reaction solution. The same result was found in sulfuric acid solutions containing either Ce(III) or malonic acid. Dissolution of gold occurred in a sulfuric acid solution containing bromate or bromide ions. Adsorption of bromide ions on gold electrode occurred in Br(-)-containing sulfuric acid solution at more negative potentials. In the BZ system, dissolution of gold in the presence of oxidizing (bromate) and complexing (bromide) species causes the decrease in the electrode mass that accompanies the positive potential jump under open-circuit conditions, or the current pulse that occurs at more negative applied constant potentials. Cathodic current pulses occurring at a constant electrode potential (either 0.8 or 1.06 V) are associated with the reduction of Ce(IV) formed as a result of periodic homogeneous oxidation of Ce(III) by bromate. Bromide ions formed in the course of the BZ reaction appear to play a significant role in electrode mass changes, causing a mass decrease at more positive potentials due to dissolution of gold, and a subsequent mass increase at more negative potentials due to adsorption processes.

11.
Phys Chem Chem Phys ; 13(12): 5252-63, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21173969

RESUMO

We report the results of X-ray absorption spectroscopy studies on electrochemically deposited iridium oxide films. The emphasis of the study is the correlation of X-ray derived structural data with electrochemically controlled charge state. Data were acquired for films subject to redox cycling in neutral and alkaline aqueous media. In both cases, cyclic voltammetric responses show two redox couples, coulometrically of roughly equal magnitude. Assays of the iridium population (based on the iridium L(3) absorption edge amplitude) and the charge injected (based on integration of the voltammetric response) show that overall an average of ca. one electron per iridium atom is transferred. The absorption edge shifts indicate that the formal charge on the iridium changes, on average, from ca. 3.5+ to ca. 4.5+ across the entire process. EXAFS-derived changes in mean Ir-O distance and their mean square variation have been interpreted in terms of a two-site model, in which the two types of site have distinct redox potentials. Variations of local structure and disorder with potential are discussed and a generic model for structural disorder (parameterized via Debye-Waller factor) with diagnostic capability is developed.

12.
Forensic Sci Int ; 323: 110786, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33930824

RESUMO

The Physical Developer solution currently recommended for use in the United Kingdom for fingermark visualisation uses two surfactants: n-dodecylamine acetate (nDDAA) and Synperonic® N. Synperonic® N is covered by the EU directive 82/242/EEC, which sought to phase out chemicals with degradation products more harmful than their precursor. This study explores the replacement of Synperonic® N with alternative detergents and examines their ability to produce clear, stable solutions that are effective at developing fingermarks. The critical properties of the detergents were investigated, such as the critical micelle concentration and the hydrophilic-lipophilic balance, and planted mark comparisons were performed on promising formulations. Tween® 20 was deemed unsuitable due to the production of cloudy solutions and the requirement to age the formulation to improve effectiveness. Brij® C10 produced clear formulations; however, these were too stable causing unacceptably long exhibit processing times, and an additional preparation stage was necessary. Brij® L23, Brij® S10, Igepal® CO-630, Polyoxyethylene (10) tridecyl ether and Tergitol™ 15-S-9 also proved to be unsuccessful alternatives. Decaethylene glycol monododecyl ether (DGME) was found to be a suitable alternative to Synperonic® N and depletion series experiments suggested that a range of DGME and nDDAA detergent quantities were effective at developing marks. The processing time using DGME was similar to Synperonic® N and the most favourable ratio of reagents is proposed in this paper as a reformulated Physical Developer solution.

13.
Chem Commun (Camb) ; 57(77): 9834-9837, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581320

RESUMO

Here we demonstrate the generation of novel ionic liquid analogue (ILA) electrolytes for aluminium (Al) electrodeposition that are based on salts of amidine Lewis bases. The electrolytes exhibit reversible voltammetric plating/stripping of Al, good ionic conductivities (10-14 mS cm-1), and relatively low viscosities (50-80 cP). The rheological properties are an improvement on analogous amide-based ILAs and make these liquids credible alternatives to ILAs based on urea or acetamide, or conventional chloroaluminate ionic liquids (IL) for Al battery applications.

14.
Anal Chem ; 82(2): 483-6, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20025232

RESUMO

The visualization of latent fingerprints on a metallic (stainless steel) surface is described by means of spatially selective deposition of an electrochromic polymer (polyaniline). Inhibition of electrochemical processes on areas of the surface masked by the fingerprint results in polymer deposition generating a negative image of the fingermark. By variation of the applied potential, the polymer optical characteristics can be continuously and reversibly adjusted to optimize visual contrast of the fingerprint.

15.
Langmuir ; 26(13): 10842-53, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20476725

RESUMO

A novel multilayer film containing a cationic phosphonium-derivatized Ni(salen)-type complex and poly(sodium-4-styrenesulfonate (NaPSS) was assembled onto quartz, mica, and metal surfaces using the layer-by-layer (LbL) technique. Spectroscopic (UV-vis) and gravimetric (QCM) responses for the multilayer films show regular stepwise growth and the signature of strong electrostatic interactions between the component layers. The gravimetric responses indicate the presence of substantial additional (net neutral) material in the PSS layers, which XPS shows is not polyelectrolyte or salt, so charge compensation is intrinsic; we deduce the presence of space-filling solvent. Direct electrostatic interaction of the two-component layers is enhanced by a secondary noncovalent interaction between the delocalized pi-systems of the two components. Permeability of the film to the redox probe [Fe(CN)(6)](3-/4-) was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Qualitatively similar results were obtained in the absence and presence of a precursor PSS/PAH multilayer, but with a general shift in kinetic and diffusional processes to longer time scales (lower frequencies) in the presence of the precursor layer and with increasing numbers of PSS/[Ni(salen)] bilayers. Quantitatively, the EIS data were interpreted using a capillary membrane model (CMM) to yield values of coverage, apparent charge transfer resistance, double-layer capacitance, pore size, and diffusion coefficient. The coverage values were consistent with a model in which there are no preferential growth sites and the surface charge density is independent of the number of bilayers.

16.
Chem Commun (Camb) ; (8): 935-7, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19214321

RESUMO

The electrochemical quartz crystal microbalance was used to determine redox-driven ion transfers accompanying p-doping of polypyrrole (PPy) films in the choline chloride-based deep eutectic ionic liquid ethaline; electroneutrality maintenance is gravimetrically dominated by choline cation transfer and this requires the presence within the undoped film of ionic liquid, when this finite reservoir of choline is exhausted there is a shift to chloride transfer.

17.
J Phys Chem B ; 111(16): 4043-53, 2007 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-17402770

RESUMO

A combination of XPS, reflectance infrared spectroscopy, and neutron reflectivity measurements has been used to probe the spatial and global extents to which carboxylic acid motifs in electrodeposited conducting polymer films can be functionalized by reaction with vapor phase reagents (a carbodiimide together with trifluoroethanol) with the goal of controlling hydrophobicity. Across a range of polymer deposition and reaction temperatures, neutron reflectivity showed that, surprisingly, functionalization of the polymer matrix at depths >5-10 nm into the polymer film was always significantly lower than at the exposed surface. The most efficient functionalization was found to occur when a low-density polymer matrix was prepared by elution of motifs cleaved from the polymer by base hydrolysis. Finally, when trifluoroethanol functionalization was performed, the macroscopic property of hydrophobicity was related to the surface, internal microstructure, and composition of the reacted films as elucidated by the above combination of probes.

19.
J Phys Chem B ; 110(30): 14761-9, 2006 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16869584

RESUMO

A comprehensive thermodynamic model for solvent and salt transfer accompanying a partial redox conversion, i.e., conversion between any two oxidation levels, of an electroactive polymer (EAP) film is presented. We discuss two possible cases, namely, one-phase and two-phase behavior of an EAP film. An expression describing the extent of solvent transfer in these situations is presented. Salt transfer is characterized by the difference in permselectivity indices (Delta R(b,a)) between two oxidation levels of the EAP film. Delta R(b,a) represents the difference in co-ion (salt) exclusion properties of the EAP in the two different oxidation levels. Delta R(b,a) is expressed in terms of the EAP's charge, number of electrons transferred in the redox reaction of an electroactive unit, concentration of the supporting electrolyte, salt partition coefficient between solvent and EAP phases, and salt activity coefficients in both phases. Plots of Delta R(b,a) as a function of the electrolyte concentration allow determining the EAP's phase behavior, ratio of salt partition coefficients, and number of electrons exchanged in the redox process. Delta R(b,a) is an experimentally accessible quantity; it can be obtained from electrochemical quartz crystal microbalance (EQCM) experiments. Delta R(b,a) values can be used as a diagnostic tool to characterize an EAP film.

20.
J Phys Chem B ; 109(30): 14335-43, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16852803

RESUMO

We describe in situ neutron reflectivity (NR) and RAIRS studies of the chemical modification of films of a polypyrrole-based conducting polymer derived from the pentafluorophenyl ester of poly(pyrrole-N-propanoic acid) (PFP) electrodeposited on electrode surfaces. We explore the role of the solvent in controlling the rate of reaction with solution-based nucleophiles (amines, which react with the ester to form amides). By varying the identity of the solvent (water vs acetonitrile) and the neutron contrast (deuteration), we find that both the identity of the solvent and its population within the film are paramount in determining chemical reactivity and electroactivity. IR signatures allow monitoring of the reaction of solution-based amine-tagged species such as amino-terminated poly(propylene glycol), ferrocene ethylamine, and lysine with film-based ester functionalities: the carbonyl bands show ester/amide interconversion and some hydrolysis to acid. Time-dependent spectral analysis shows marked variations in reaction rate with (i) (co-)polymer composition (replacement of some fluorinated ester-functionalized pyrrole with unfunctionalized pyrrole), (ii) the solvent to which the polymer film is exposed, and (iii) the rate of polymer deposition. NR data provide solvent profiles as a function of distance perpendicular to the interface, the variations of which provide an explanation for film reactivity patterns. Homopolymer films are relatively hydrophobic, thus hindering reaction with species present in water solutions. Incorporating pyrrole groups raises the solvent population-dramatically for water-thereby facilitating entry and reaction of aqueous-based lysine. Changing film deposition rate yields films with different absolute levels of solvent and reactivity patterns that are dependent on the size of the reactant molecules: more rapid deposition of polymer gives films with a more open structure leading to a higher solvent content and thence increased reactivity. These results, supported by XPS and AFM data, allow assembly of composition-structure-reactivity correlations, in which the controlling feature is film solvation.


Assuntos
Nêutrons , Polímeros/química , Propionatos/química , Eletroquímica , Eletrodos , Ouro/química , Oxirredução , Pirróis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA