Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200118

RESUMO

Drought represents a major abiotic stress factor negatively affecting growth, yield and tuber quality of potatoes. Quantitative trait locus (QTL) analyses were performed in cultivated potatoes for drought tolerance index DRYM (deviation of relative starch yield from the experimental median), tuber starch content, tuber starch yield, tuber fresh weight, selected transcripts and metabolites under control and drought stress conditions. Eight genomic regions of major interest for drought tolerance were identified, three representing standalone DRYM QTL. Candidate genes, e.g., from signaling pathways for ethylene, abscisic acid and brassinosteroids, and genes encoding cell wall remodeling enzymes were identified within DRYM QTL. Co-localizations of DRYM QTL and QTL for tuber starch content, tuber starch yield and tuber fresh weight with underlying genes of the carbohydrate metabolism were observed. Overlaps of DRYM QTL with metabolite QTL for ribitol or galactinol may indicate trade-offs between starch and compatible solute biosynthesis. Expression QTL confirmed the drought stress relevance of selected transcripts by overlaps with DRYM QTL. Bulked segregant analyses combined with next-generation sequencing (BSAseq) were used to identify mutations in genes under the DRYM QTL on linkage group 3. Future analyses of identified genes for drought tolerance will give a better insight into drought tolerance in potatoes.


Assuntos
Cromossomos de Plantas/genética , Secas , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Solanum tuberosum/genética , Tetraploidia , Mapeamento Cromossômico , Ligação Genética , Genômica , Fenótipo , Tubérculos/genética , Solanum tuberosum/fisiologia
2.
Genes (Basel) ; 12(4)2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800602

RESUMO

Potato is regarded as drought sensitive and most vulnerable to climate changes. Its cultivation in drought prone regions or under conditions of more frequent drought periods, especially in subtropical areas, requires intensive research to improve drought tolerance in order to guarantee high yields under limited water supplies. A candidate gene approach was used to develop functional simple sequence repeat (SSR) markers for association studies in potato with the aim to enhance breeding for drought tolerance. SSR primer combinations, mostly surrounding interrupted complex and compound repeats, were derived from 103 candidate genes for drought tolerance. Validation of the SSRs was performed in an association panel representing 34 mainly starch potato cultivars. Seventy-five out of 154 SSR primer combinations (49%) resulted in polymorphic, highly reproducible banding patterns with polymorphic information content (PIC) values between 0.11 and 0.90. Five SSR markers identified allelic differences between the potato cultivars that showed significant associations with drought sensitivity. In all cases, the group of drought-sensitive cultivars showed predominantly an additional allele, indicating that selection against these alleles by marker-assisted breeding might confer drought tolerance. Further studies of these differences in the candidate genes will elucidate their role for an improved performance of potatoes under water-limited conditions.


Assuntos
Repetições de Microssatélites , Solanum tuberosum/fisiologia , Estresse Fisiológico , Biologia Computacional/métodos , DNA de Plantas/genética , Secas , Estudos de Associação Genética , Melhoramento Vegetal , Solanum tuberosum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA