RESUMO
BACKGROUND: Genetic and experimental studies support a causal involvement of IL-6 (interleukin-6) signaling in atheroprogression. Although trials targeting IL-6 signaling are underway, any benefits must be balanced against an impaired host immune response. Dissecting the mechanisms that mediate the effects of IL-6 signaling on atherosclerosis could offer insights about novel drug targets with more specific effects. METHODS: Leveraging data from 522 681 individuals, we constructed a genetic instrument of 26 variants in the gene encoding the IL-6R (IL-6 receptor) that proxied for pharmacological IL-6R inhibition. Using Mendelian randomization, we assessed its effects on 3281 plasma proteins quantified with an aptamer-based assay in the INTERVAL cohort (n=3301). Using mediation Mendelian randomization, we explored proteomic mediators of the effects of genetically proxied IL-6 signaling on coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease. For significant mediators, we tested associations of their circulating levels with incident cardiovascular events in a population-based study (n=1704) and explored the histological, transcriptomic, and cellular phenotypes correlated with their expression levels in samples from human atherosclerotic lesions. RESULTS: We found significant effects of genetically proxied IL-6 signaling on 70 circulating proteins involved in cytokine production/regulation and immune cell recruitment/differentiation, which correlated with the proteomic effects of pharmacological IL-6R inhibition in a clinical trial. Among the 70 significant proteins, genetically proxied circulating levels of CXCL10 (C-X-C motif chemokine ligand 10) were associated with risk of coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease, with up to 67% of the effects of genetically downregulated IL-6 signaling on these end points mediated by decreases in CXCL10. Higher midlife circulating CXCL10 levels were associated with a larger number of cardiovascular events over 20 years, whereas higher CXCL10 expression in human atherosclerotic lesions correlated with a larger lipid core and a transcriptomic profile reflecting immune cell infiltration, adaptive immune system activation, and cytokine signaling. CONCLUSIONS: Integrating multiomics data, we found a proteomic signature of IL-6 signaling activation and mediators of its effects on cardiovascular disease. Our analyses suggest the interferon-γ-inducible chemokine CXCL10 to be a potentially causal mediator for atherosclerosis in 3 vascular compartments and, as such, could serve as a promising drug target for atheroprotection.
Assuntos
Aterosclerose , Quimiocina CXCL10 , Interleucina-6 , Proteogenômica , Humanos , Aterosclerose/genética , Quimiocina CXCL10/metabolismo , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Interleucina-6/metabolismo , Análise da Randomização Mendeliana , Doença Arterial Periférica , Proteômica , Acidente Vascular Cerebral/genéticaRESUMO
Despite early interest, the evidence linking fatty acids to cardiovascular diseases (CVDs) remains controversial. We used Mendelian randomization to explore the involvement of polyunsaturated (PUFA) and monounsaturated (MUFA) fatty acids biosynthesis in the etiology of several CVD endpoints in up to 1 153 768 European (maximum 123 668 cases) and 212 453 East Asian (maximum 29 319 cases) ancestry individuals. As instruments, we selected single nucleotide polymorphisms mapping to genes with well-known roles in PUFA (i.e. FADS1/2 and ELOVL2) and MUFA (i.e. SCD) biosynthesis. Our findings suggest that higher PUFA biosynthesis rate (proxied by rs174576 near FADS1/2) is related to higher odds of multiple CVDs, particularly ischemic stroke, peripheral artery disease and venous thromboembolism, whereas higher MUFA biosynthesis rate (proxied by rs603424 near SCD) is related to lower odds of coronary artery disease among Europeans. Results were unclear for East Asians as most effect estimates were imprecise. By triangulating multiple approaches (i.e. uni-/multi-variable Mendelian randomization, a phenome-wide scan, genetic colocalization and within-sibling analyses), our results are compatible with higher low-density lipoprotein (LDL) cholesterol (and possibly glucose) being a downstream effect of higher PUFA biosynthesis rate. Our findings indicate that PUFA and MUFA biosynthesis are involved in the etiology of CVDs and suggest LDL cholesterol as a potential mediating trait between PUFA biosynthesis and CVDs risk.
Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/genética , Análise da Randomização Mendeliana , Ácidos Graxos/genética , Povo Asiático/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
BACKGROUND: Polygenic Risk Scores (PRSs) have been proposed as a mechanism for risk-stratification of screening, increasing efficiency and enabling extension of existing programmes to improve survival in our aging population. We sought to model the impact of three hypothetical programmes of annual breast cancer screening in women aged 40-49 years: screening the PRS-defined high-risk quintile, screening the oldest quintile, and screening the full population. METHODS: In this UK-based modelling study, we used the published estimate of the area under the curve (AUC) of a currently available breast cancer PRS (0·64) to calculate the proportion of cancers captured by the PRS-defined high-risk quintile. We used population size estimates from the Office for National Statistics alongside age-stratified incidence rates of breast cancer, and age or stage-specific survival data from the National Cancer Registry, to build our model. We used stage-specific route-to-diagnosis data to reassign stage-specific survival for screen-detected cancers. Ethics approval was not required. FINDINGS: The PRS-defined high-risk quintile, oldest quintile, and full population capture 37% (n=2811), 29% (n=2198), and 100% (n=7533) of breast cancers occurring in women aged 40-49 each year. Annual screening of each group using digital mammography (sensitivity 70%, specificity 92%) would identify 1968, 1538, and 5273 breast cancers per year, respectively. This corresponds to an improvement in survival of 1·4% (102 deaths averted), 1·1% (80 deaths averted) and 3·6% (274 deaths averted) compared with baseline (no screening). Full population screening would require 4â369â703 mammograms and 354â246 confirmatory tests (breast biopsies) every year, while screening the oldest quintile would require 937â850 mammograms and 76â390 biopsies. Screening the PRS-defined high-risk quintile would require 873â941 mammograms and 71â658 biopsies, in addition to a PRS for all women in the age group (4â369â703). INTERPRETATION: Under favourable assumptions, stratifying screening by PRS rather than age results in modest gains in survival but increases overdiagnoses, logistical complexity, and economic costs. Our study is limited by our modelling parameters (anticipated to maximise survival estimates), including complete uptake of PRS profiling and cancer screening, no interval cancers, and application of screening tools superior to those currently available in the UK. Only with randomised controlled trials, can the uptake, clinical impact, costs, and harms of PRS-stratified screening be definitively assessed. FUNDING: The Wellcome Trust.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Idoso , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Detecção Precoce de Câncer/métodos , Mamografia/métodos , Mama , Fatores de Risco , Programas de Rastreamento/métodos , Medição de RiscoRESUMO
BACKGROUND: Although APOE ε4 allele carriage confers a risk for coronary artery disease, its persistence in humans might be explained by certain survival advantages (antagonistic pleiotropy). METHODS: Combining data from ~ 37,000 persons from three older age British cohorts (1946 National Survey of Health and Development [NSHD], Southall and Brent Revised [SABRE], and UK Biobank) and one younger age cohort (Avon Longitudinal Study of Parents and Children [ALSPAC]), we explored whether APOE ε4 carriage associates with beneficial or unfavorable left ventricular (LV) structural and functional metrics by echocardiography and cardiovascular magnetic resonance (CMR). RESULTS: Compared to the non-APOE ε4 group, APOE ε4 carriers had similar cardiac phenotypes in terms of LV ejection fraction, E/e', posterior wall and interventricular septal thickness, and LV mass. However, they had improved myocardial performance resulting in greater LV stroke volume generation per 1 mL of myocardium (higher myocardial contraction fraction). In NSHD (n = 1467) and SABRE (n = 1187), ε4 carriers had a 4% higher MCF (95% CI 1-7%, p = 0.016) using echocardiography. Using CMR data, in UK Biobank (n = 32,972), ε4 carriers had a 1% higher MCF 95% (CI 0-1%, p = 0.020) with a dose-response relationship based on the number of ε4 alleles. In addition, UK Biobank ε4 carriers also had more favorable radial and longitudinal strain rates compared to non APOE ε4 carriers. In ALSPAC (n = 1397), APOE ε4 carriers aged < 24 years had a 2% higher MCF (95% CI 0-5%, p = 0.059). CONCLUSIONS: By triangulating results in four independent cohorts, across imaging modalities (echocardiography and CMR), and in ~ 37,000 individuals, our results point towards an association between ε4 carriage and improved cardiac performance in terms of LV MCF. This potentially favorable cardiac phenotype adds to the growing number of reported survival advantages attributed to the pleiotropic effects APOE ε4 carriage that might collectively explain its persistence in human populations.
Assuntos
Apolipoproteína E4 , Doença da Artéria Coronariana , Adolescente , Idoso , Criança , Humanos , Alelos , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Doença da Artéria Coronariana/genética , Genótipo , Estudos Longitudinais , Miocárdio , FenótipoRESUMO
BACKGROUND: It is proposed that, through restriction to individuals delineated as high risk, polygenic risk scores (PRSs) might enable more efficient targeting of existing cancer screening programmes and enable extension into new age ranges and disease types. To address this proposition, we present an overview of the performance of PRS tools (ie, models and sets of single nucleotide polymorphisms) alongside harms and benefits of PRS-stratified cancer screening for eight example cancers (breast, prostate, colorectal, pancreas, ovary, kidney, lung, and testicular cancer). METHODS: For this modelling analysis, we used age-stratified cancer incidences for the UK population from the National Cancer Registration Dataset (2016-18) and published estimates of the area under the receiver operating characteristic curve for current, future, and optimised PRS for each of the eight cancer types. For each of five PRS-defined high-risk quantiles (ie, the top 50%, 20%, 10%, 5%, and 1%) and according to each of the three PRS tools (ie, current, future, and optimised) for the eight cancers, we calculated the relative proportion of cancers arising, the odds ratios of a cancer arising compared with the UK population average, and the lifetime cancer risk. We examined maximal attainable rates of cancer detection by age stratum from combining PRS-based stratification with cancer screening tools and modelled the maximal impact on cancer-specific survival of hypothetical new UK programmes of PRS-stratified screening. FINDINGS: The PRS-defined high-risk quintile (20%) of the population was estimated to capture 37% of breast cancer cases, 46% of prostate cancer cases, 34% of colorectal cancer cases, 29% of pancreatic cancer cases, 26% of ovarian cancer cases, 22% of renal cancer cases, 26% of lung cancer cases, and 47% of testicular cancer cases. Extending UK screening programmes to a PRS-defined high-risk quintile including people aged 40-49 years for breast cancer, 50-59 years for colorectal cancer, and 60-69 years for prostate cancer has the potential to avert, respectively, a maximum of 102, 188, and 158 deaths annually. Unstratified screening of the full population aged 48-49 years for breast cancer, 58-59 years for colorectal cancer, and 68-69 years for prostate cancer would use equivalent resources and avert, respectively, an estimated maximum of 80, 155, and 95 deaths annually. These maximal modelled numbers will be substantially attenuated by incomplete population uptake of PRS profiling and cancer screening, interval cancers, non-European ancestry, and other factors. INTERPRETATION: Under favourable assumptions, our modelling suggests modest potential efficiency gain in cancer case detection and deaths averted for hypothetical new PRS-stratified screening programmes for breast, prostate, and colorectal cancer. Restriction of screening to high-risk quantiles means many or most incident cancers will arise in those assigned as being low-risk. To quantify real-world clinical impact, costs, and harms, UK-specific cluster-randomised trials are required. FUNDING: The Wellcome Trust.
Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Neoplasias da Próstata , Neoplasias Testiculares , Masculino , Humanos , Detecção Precoce de Câncer , Fatores de Risco , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Reino Unido/epidemiologia , Predisposição Genética para DoençaRESUMO
BACKGROUND: Heart failure (HF) is a highly prevalent disorder for which disease mechanisms are incompletely understood. The discovery of disease-associated proteins with causal genetic evidence provides an opportunity to identify new therapeutic targets. METHODS: We investigated the observational and causal associations of 90 cardiovascular proteins, which were measured using affinity-based proteomic assays. First, we estimated the associations of 90 cardiovascular proteins with incident heart failure by means of a fixed-effect meta-analysis of 4 population-based studies, composed of a total of 3019 participants with 732 HF events. The causal effects of HF-associated proteins were then investigated by Mendelian randomization, using cis-protein quantitative loci genetic instruments identified from genomewide association studies in more than 30 000 individuals. To improve the precision of causal estimates, we implemented an Mendelian randomization model that accounted for linkage disequilibrium between instruments and tested the robustness of causal estimates through a multiverse sensitivity analysis that included up to 120 combinations of instrument selection parameters and Mendelian randomization models per protein. The druggability of candidate proteins was surveyed, and mechanism of action and potential on-target side effects were explored with cross-trait Mendelian randomization analysis. RESULTS: Forty-four of ninety proteins were positively associated with risk of incident HF (P<6.0×10-4). Among these, 8 proteins had evidence of a causal association with HF that was robust to multiverse sensitivity analysis: higher CSF-1 (macrophage colony-stimulating factor 1), Gal-3 (galectin-3) and KIM-1 (kidney injury molecule 1) were positively associated with risk of HF, whereas higher ADM (adrenomedullin), CHI3L1 (chitinase-3-like protein 1), CTSL1 (cathepsin L1), FGF-23 (fibroblast growth factor 23), and MMP-12 (matrix metalloproteinase-12) were protective. Therapeutics targeting ADM and Gal-3 are currently under evaluation in clinical trials, and all the remaining proteins were considered druggable, except KIM-1. CONCLUSIONS: We identified 44 circulating proteins that were associated with incident HF, of which 8 showed evidence of a causal relationship and 7 were druggable, including adrenomedullin, which represents a particularly promising drug target. Our approach demonstrates a tractable roadmap for the triangulation of population genomic and proteomic data for the prioritization of therapeutic targets for complex human diseases.
Assuntos
Adrenomedulina , Insuficiência Cardíaca , Adrenomedulina/genética , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/genética , Humanos , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , ProteômicaRESUMO
AIMS: Pharmacogenomic testing has the potential to target medicines more effectively towards those who will benefit and avoid use in individuals at risk of harm. Health economies are actively considering how pharmacogenomic tests can be integrated into health care systems to improve use of medicines. However, one of the barriers to effective implementation is evaluation of the evidence including clinical usefulness, cost-effectiveness, and operational requirements. We sought to develop a framework that could aid the implementation of pharmacogenomic testing. We take the view from the National Health Service (NHS) in England. METHODS: We used a literature review using EMBASE and Medline databases to identify prospective studies of pharmacogenomic testing, focusing on clinical outcomes and implementation of pharmacogenomics. Using this search, we identified key themes relating to the implementation of pharmacogenomic tests. We used a clinical advisory group with expertise in pharmacology, pharmacogenomics, formulary evaluation, and policy implementation to review data from our literature review and the interpretation of these data. With the clinical advisory group, we prioritized themes and developed a framework to evaluate proposals to implement pharmacogenomics tests. RESULTS: Themes that emerged from review of the literature and subsequent discussion were distilled into a 10-point checklist that is proposed as a tool to aid evidence-based implementation of pharmacogenomic testing into routine clinical care within the NHS. CONCLUSION: Our 10-point checklist outlines a standardized approach that could be used to evaluate proposals to implement pharmacogenomic tests. We propose a national approach, taking the view of the NHS in England. Using this approach could centralize commissioning of appropriate pharmacogenomic tests, reduce inequity and duplication using regional approaches, and provide a robust and evidence-based framework for adoption. Such an approach could also be applied to other health systems.
Assuntos
Farmacogenética , Medicina Estatal , Humanos , Testes Farmacogenômicos , Estudos Prospectivos , InglaterraRESUMO
BACKGROUND: Current guidelines recommend using direct oral anticoagulants (DOACs) over warfarin in patients with atrial fibrillation (AF), but head-to-head trial data do not exist to guide the choice of DOAC. OBJECTIVE: To do a large-scale comparison between all DOACs (apixaban, dabigatran, edoxaban, and rivaroxaban) in routine clinical practice. DESIGN: Multinational population-based cohort study. SETTING: Five standardized electronic health care databases, which covered 221 million people in France, Germany, the United Kingdom, and the United States. PARTICIPANTS: Patients who were newly diagnosed with AF from 2010 through 2019 and received a new DOAC prescription. MEASUREMENTS: Database-specific hazard ratios (HRs) of ischemic stroke or systemic embolism, intracranial hemorrhage (ICH), gastrointestinal bleeding (GIB), and all-cause mortality between DOACs were estimated using a Cox regression model stratified by propensity score and pooled using a random-effects model. RESULTS: A total of 527 226 new DOAC users met the inclusion criteria (apixaban, n = 281 320; dabigatran, n = 61 008; edoxaban, n = 12 722; and rivaroxaban, n = 172 176). Apixaban use was associated with lower risk for GIB than use of dabigatran (HR, 0.81 [95% CI, 0.70 to 0.94]), edoxaban (HR, 0.77 [CI, 0.66 to 0.91]), or rivaroxaban (HR, 0.72 [CI, 0.66 to 0.79]). No substantial differences were observed for other outcomes or DOAC-DOAC comparisons. The results were consistent for patients aged 80 years or older. Consistent associations between lower GIB risk and apixaban versus rivaroxaban were observed among patients receiving the standard dose (HR, 0.72 [CI, 0.64 to 0.82]), those receiving a reduced dose (HR, 0.68 [CI, 0.61 to 0.77]), and those with chronic kidney disease (HR, 0.68 [CI, 0.59 to 0.77]). LIMITATION: Residual confounding is possible. CONCLUSION: Among patients with AF, apixaban use was associated with lower risk for GIB and similar rates of ischemic stroke or systemic embolism, ICH, and all-cause mortality compared with dabigatran, edoxaban, and rivaroxaban. This finding was consistent for patients aged 80 years or older and those with chronic kidney disease, who are often underrepresented in clinical trials. PRIMARY FUNDING SOURCE: None.
Assuntos
Anticoagulantes , Fibrilação Atrial , Humanos , Administração Oral , Anticoagulantes/efeitos adversos , Fibrilação Atrial/tratamento farmacológico , Estudos de Coortes , Dabigatrana/efeitos adversos , Embolia/epidemiologia , Embolia/etiologia , Embolia/prevenção & controle , AVC Isquêmico , Insuficiência Renal Crônica/complicações , Rivaroxabana/efeitos adversos , Estados Unidos , Ensaios Clínicos como AssuntoRESUMO
BACKGROUND: There is growing evidence that polygenic risk scores (PRSs) can identify individuals with elevated lifetime risk of coronary artery disease (CAD). Whether they can also be used to stratify the risk of subsequent events among those surviving a first CAD event remain uncertain, with possible biological differences between CAD onset and progression, and the potential for index event bias. METHODS: Using two baseline subsamples of UK Biobank: prevalent CAD cases (N = 10 287) and individuals without CAD (N = 393 108), we evaluated associations between a CAD PRS and incident cardiovascular and fatal outcomes. RESULTS: A 1 SD higher PRS was associated with an increased risk of incident myocardial infarction (MI) in participants without CAD (OR 1.33; 95% CI 1.29, 1.38), but the effect estimate was markedly attenuated in those with prevalent CAD (OR 1.15; 95% CI 1.06, 1.25) and heterogeneity P = 0.0012. Additionally, among prevalent CAD cases, we found an evidence of an inverse association between the CAD PRS and risk of all-cause death (OR 0.91; 95% CI 0.85, 0.98) compared with those without CAD (OR 1.01; 95% CI 0.99, 1.03) and heterogeneity P = 0.0041. A similar inverse association was found for ischaemic stroke [prevalent CAD (OR 0.78; 95% CI 0.67, 0.90); without CAD (OR 1.09; 95% CI 1.04, 1.15), heterogeneity P < 0.001]. CONCLUSIONS: Bias induced by case stratification and survival into UK Biobank may distort the associations of PRS derived from case-control studies or populations initially free of disease. Differentiating between effects of possible biases and genuine biological heterogeneity is a major challenge in disease progression research.
Assuntos
Isquemia Encefálica/genética , Doença da Artéria Coronariana/genética , Herança Multifatorial/genética , Acidente Vascular Cerebral/genética , Adulto , Idoso , Isquemia Encefálica/epidemiologia , Isquemia Encefálica/patologia , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/mortalidade , Doença da Artéria Coronariana/patologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Medição de Risco , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/patologiaRESUMO
BACKGROUND: Despite early interest in the health effects of polyunsaturated fatty acids (PUFA), there is still substantial controversy and uncertainty on the evidence linking PUFA to cardiovascular diseases (CVDs). We investigated the effect of plasma concentration of omega-3 PUFA (i.e. docosahexaenoic acid (DHA) and total omega-3 PUFA) and omega-6 PUFA (i.e. linoleic acid and total omega-6 PUFA) on the risk of CVDs using Mendelian randomization. METHODS: We conducted the largest genome-wide association study (GWAS) of circulating PUFA to date including a sample of 114,999 individuals and incorporated these data in a two-sample Mendelian randomization framework to investigate the involvement of circulating PUFA on a wide range of CVDs in up to 1,153,768 individuals of European ancestry (i.e. coronary artery disease, ischemic stroke, haemorrhagic stroke, heart failure, atrial fibrillation, peripheral arterial disease, aortic aneurysm, venous thromboembolism and aortic valve stenosis). RESULTS: GWAS identified between 46 and 64 SNPs for the four PUFA traits, explaining 4.8-7.9% of circulating PUFA variance and with mean F statistics >100. Higher genetically predicted DHA (and total omega-3 fatty acids) concentration was related to higher risk of some cardiovascular endpoints; however, these findings did not pass our criteria for multiple testing correction and were attenuated when accounting for LDL-cholesterol through multivariable Mendelian randomization or excluding SNPs in the vicinity of the FADS locus. Estimates for the relation between higher genetically predicted linoleic acid (and total omega-6) concentration were inconsistent across different cardiovascular endpoints and Mendelian randomization methods. There was weak evidence of higher genetically predicted linoleic acid being related to lower risk of ischemic stroke and peripheral artery disease when accounting by LDL-cholesterol. CONCLUSIONS: We have conducted the largest GWAS of circulating PUFA to date and the most comprehensive Mendelian randomization analyses. Overall, our Mendelian randomization findings do not support a protective role of circulating PUFA concentration on the risk of CVDs. However, horizontal pleiotropy via lipoprotein-related traits could be a key source of bias in our analyses.
Assuntos
Doenças Cardiovasculares , AVC Isquêmico , Bancos de Espécimes Biológicos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , LDL-Colesterol , Ácidos Graxos , Ácidos Graxos Insaturados , Estudo de Associação Genômica Ampla , Humanos , Ácido Linoleico , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Reino Unido/epidemiologiaRESUMO
BACKGROUND: Assessing the spectrum of disease risk associated with hypertriglyceridemia is needed to inform potential benefits from emerging triglyceride lowering treatments. We sought to examine the associations between a full range of plasma triglyceride concentration with five clinical outcomes. METHODS: We used linked data from primary and secondary care for 15 M people, to explore the association between triglyceride concentration and risk of acute pancreatitis, chronic pancreatitis, new onset diabetes, myocardial infarction and all-cause mortality, over a median of 6-7 years follow up. RESULTS: Triglyceride concentration was available for 1,530,411 individuals (mean age 56·6 ± 15·6 years, 51·4% female), with a median of 1·3 mmol/L (IQR: 0.9.to 1.9). Severe hypertriglyceridemia, defined as > 10 mmol/L, was identified in 3289 (0·21%) individuals including 620 with > 20 mmol/L. In multivariable analyses, a triglyceride concentration > 20 mmol/L was associated with very high risk for acute pancreatitis (Hazard ratio (HR) 13·55 (95% CI 9·15-20·06)); chronic pancreatitis (HR 25·19 (14·91-42·55)); and high risk for diabetes (HR 5·28 (4·51-6·18)) and all-cause mortality (HR 3·62 (2·82-4·65)) when compared to the reference category of ≤ 1·7 mmol/L. An association with myocardial infarction, however, was only observed for more moderate hypertriglyceridaemia between 1.7 and 10 mmol/L. We found a risk interaction with age, with higher risks for all outcomes including mortality among those ≤ 40 years compared to > 40 years. CONCLUSIONS: We highlight an exponential association between severe hypertriglyceridaemia and risk of incident acute and chronic pancreatitis, new diabetes, and mortality, especially at younger ages, but not for myocardial infarction for which only moderate hypertriglyceridemia conferred risk.
Assuntos
Hipertrigliceridemia , Infarto do Miocárdio , Pancreatite Crônica , Doença Aguda , Adulto , Idoso , Registros Eletrônicos de Saúde , Feminino , Humanos , Hipertrigliceridemia/diagnóstico , Hipertrigliceridemia/epidemiologia , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/epidemiologia , Pancreatite Crônica/complicações , TriglicerídeosRESUMO
INTRODUCTION: Plasma proteins affect biological processes and are common drug targets but their role in the development of Alzheimer's disease and related dementias remains unclear. We examined associations between 4953 plasma proteins and cognitive decline and risk of dementia in two cohort studies with 20-year follow-ups. METHODS: In the Whitehall II prospective cohort study proteins were measured using SOMAscan technology. Cognitive performance was tested five times over 20 years. Linkage to electronic health records identified incident dementia. The results were replicated in the Atherosclerosis Risk in Communities (ARIC) study. RESULTS: Fifteen non-amyloid/non-tau-related proteins were associated with cognitive decline and dementia, were consistently identified in both cohorts, and were not explained by known dementia risk factors. Levels of six of the proteins are modifiable by currently approved medications for other conditions. DISCUSSION: This study identified several plasma proteins in dementia-free people that are associated with long-term risk of cognitive decline and dementia.
Assuntos
Doença de Alzheimer , Aterosclerose , Disfunção Cognitiva , Demência , Aterosclerose/epidemiologia , Proteínas Sanguíneas , Disfunção Cognitiva/epidemiologia , Demência/epidemiologia , Humanos , Estudos Prospectivos , Proteínas tauRESUMO
OBJECTIVE: To examine whether genetic variation affecting the expression or function of lipid-lowering drug targets is associated with Alzheimer disease (AD) risk, to evaluate the potential impact of long-term exposure to corresponding therapeutics. METHODS: We conducted Mendelian randomization analyses using variants in genes that encode the protein targets of several approved lipid-lowering drug classes: HMGCR (encoding the target for statins), PCSK9 (encoding the target for PCSK9 inhibitors, eg, evolocumab and alirocumab), NPC1L1 (encoding the target for ezetimibe), and APOB (encoding the target of mipomersen). Variants were weighted by associations with low-density lipoprotein cholesterol (LDL-C) using data from lipid genetics consortia (n up to 295,826). We meta-analyzed Mendelian randomization estimates for regional variants weighted by LDL-C on AD risk from 2 large samples (total n = 24,718 cases, 56,685 controls). RESULTS: Models for HMGCR, APOB, and NPC1L1 did not suggest that the use of related lipid-lowering drug classes would affect AD risk. In contrast, genetically instrumented exposure to PCSK9 inhibitors was predicted to increase AD risk in both of the AD samples (combined odds ratio per standard deviation lower LDL-C inducible by the drug target = 1.45, 95% confidence interval = 1.23-1.69). This risk increase was opposite to, although more modest than, the degree of protection from coronary artery disease predicted by these same methods for PCSK9 inhibition. INTERPRETATION: We did not identify genetic support for the repurposing of statins, ezetimibe, or mipomersen for AD prevention. Notwithstanding caveats to this genetic evidence, pharmacovigilance for AD risk among users of PCSK9 inhibitors may be warranted. ANN NEUROL 2020;87:30-39.
Assuntos
Doença de Alzheimer/genética , Apolipoproteína B-100/genética , Predisposição Genética para Doença/genética , Hidroximetilglutaril-CoA Redutases/genética , Proteínas de Membrana Transportadoras/genética , Análise da Randomização Mendeliana , Pró-Proteína Convertase 9/genética , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
BACKGROUND & AIMS: MRI-based corrected T1 (cT1) is a non-invasive method to grade the severity of steatohepatitis and liver fibrosis. We aimed to identify genetic variants influencing liver cT1 and use genetics to understand mechanisms underlying liver fibroinflammatory disease and its link with other metabolic traits and diseases. METHODS: First, we performed a genome-wide association study (GWAS) in 14,440 Europeans, with liver cT1 measures, from the UK Biobank. Second, we explored the effects of the cT1 variants on liver blood tests, and a range of metabolic traits and diseases. Third, we used Mendelian randomisation to test the causal effects of 24 predominantly metabolic traits on liver cT1 measures. RESULTS: We identified 6 independent genetic variants associated with liver cT1 that reached the GWAS significance threshold (p <5×10-8). Four of the variants (rs759359281 in SLC30A10, rs13107325 in SLC39A8, rs58542926 in TM6SF2, rs738409 in PNPLA3) were also associated with elevated aminotransferases and had variable effects on liver fat and other metabolic traits. Insulin resistance, type 2 diabetes, non-alcoholic fatty liver and body mass index were causally associated with elevated cT1, whilst favourable adiposity (instrumented by variants associated with higher adiposity but lower risk of cardiometabolic disease and lower liver fat) was found to be protective. CONCLUSION: The association between 2 metal ion transporters and cT1 indicates an important new mechanism in steatohepatitis. Future studies are needed to determine whether interventions targeting the identified transporters might prevent liver disease in at-risk individuals. LAY SUMMARY: We estimated levels of liver inflammation and scarring based on magnetic resonance imaging of 14,440 UK Biobank participants. We performed a genetic study and identified variations in 6 genes associated with levels of liver inflammation and scarring. Participants with variations in 4 of these genes also had higher levels of markers of liver cell injury in blood samples, further validating their role in liver health. Two identified genes are involved in the transport of metal ions in our body. Further investigation of these variations may lead to better detection, assessment, and/or treatment of liver inflammation and scarring.
Assuntos
Proteínas de Transporte de Cátions/genética , Fígado Gorduroso/genética , Cirrose Hepática/genética , Fígado , Síndrome Metabólica/genética , Europa (Continente)/epidemiologia , Fígado Gorduroso/epidemiologia , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/epidemiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Análise da Randomização Mendeliana , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Proteção , Medição de Risco/métodosRESUMO
BACKGROUND: Despite the availability of effective drug therapies that reduce low-density lipoprotein (LDL)-cholesterol (LDL-C), cardiovascular disease (CVD) remains an important cause of mortality and morbidity. Therefore, additional LDL-C reduction may be warranted, especially for people who are unresponsive to, or unable to take, existing LDL-C-reducing therapies. By inhibiting the proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme, monoclonal antibodies (PCSK9 inhibitors) reduce LDL-C and CVD risk. OBJECTIVES: Primary To quantify the effects of PCSK9 inhibitors on CVD, all-cause mortality, myocardial infarction, and stroke, compared to placebo or active treatment(s) for primary and secondary prevention. Secondary To quantify the safety of PCSK9 inhibitors, with specific focus on the incidence of influenza, hypertension, type 2 diabetes, and cancer, compared to placebo or active treatment(s) for primary and secondary prevention. SEARCH METHODS: We identified studies by systematically searching CENTRAL, MEDLINE, Embase, and Web of Science in December 2019. We also searched ClinicalTrials.gov and the International Clinical Trials Registry Platform in August 2020 and screened the reference lists of included studies. This is an update of the review first published in 2017. SELECTION CRITERIA: All parallel-group and factorial randomised controlled trials (RCTs) with a follow-up of at least 24 weeks were eligible. DATA COLLECTION AND ANALYSIS: Two review authors independently reviewed and extracted data. Where data were available, we calculated pooled effect estimates. We used GRADE to assess certainty of evidence and in 'Summary of findings' tables. MAIN RESULTS: We included 24 studies with data on 60,997 participants. Eighteen trials randomised participants to alirocumab and six to evolocumab. All participants received background lipid-lowering treatment or lifestyle counselling. Six alirocumab studies used an active treatment comparison group (the remaining used placebo), compared to three evolocumab active comparison trials. Alirocumab compared with placebo decreased the risk of CVD events, with an absolute risk difference (RD) of -2% (odds ratio (OR) 0.87, 95% confidence interval (CI) 0.80 to 0.94; 10 studies, 23,868 participants; high-certainty evidence), decreased the risk of mortality (RD -1%; OR 0.83, 95% CI 0.72 to 0.96; 12 studies, 24,797 participants; high-certainty evidence), and MI (RD -2%; OR 0.86, 95% CI 0.79 to 0.94; 9 studies, 23,352 participants; high-certainty evidence) and for any stroke (RD 0%; OR 0.73, 95% CI 0.58 to 0.91; 8 studies, 22,835 participants; high-certainty evidence). Compared to active treatment the alirocumab effects, for CVD, the RD was 1% (OR 1.37, 95% CI 0.65 to 2.87; 3 studies, 1379 participants; low-certainty evidence); for mortality, RD was -1% (OR 0.51, 95% CI 0.18 to 1.40; 5 studies, 1333 participants; low-certainty evidence); for MI, RD was 1% (OR 1.45, 95% CI 0.64 to 3.28, 5 studies, 1734 participants; low-certainty evidence); and for any stroke, RD was less than 1% (OR 0.85, 95% CI 0.13 to 5.61; 5 studies, 1734 participants; low-certainty evidence). Compared to placebo the evolocumab, for CVD, the RD was -2% (OR 0.84, 95% CI 0.78 to 0.91; 3 studies, 29,432 participants; high-certainty evidence); for mortality, RD was less than 1% (OR 1.04, 95% CI 0.91 to 1.19; 3 studies, 29,432 participants; high-certainty evidence); for MI, RD was -1% (OR 0.72, 95% CI 0.64 to 0.82; 3 studies, 29,432 participants; high-certainty evidence); and for any stroke RD was less than -1% (OR 0.79, 95% CI 0.65 to 0.94; 2 studies, 28,531 participants; high-certainty evidence). Compared to active treatment, the evolocumab effects, for any CVD event RD was less than -1% (OR 0.66, 95% CI 0.14 to 3.04; 1 study, 218 participants; very low-certainty evidence); for all-cause mortality, the RD was less than 1% (OR 0.43, 95% CI 0.14 to 1.30; 3 studies, 5223 participants; very low-certainty evidence); and for MI, RD was less than 1% (OR 0.66, 95% CI 0.23 to 1.85; 3 studies, 5003 participants; very low-certainty evidence). There were insufficient data on any stroke. AUTHORS' CONCLUSIONS: The evidence for the clinical endpoint effects of evolocumab and alirocumab were graded as high. There is a strong evidence base to prescribe PCSK9 monoclonal antibodies to people who might not be eligible for other lipid-lowering drugs, or to people who cannot meet their lipid goals on more traditional therapies, which was the main patient population of the available trials. The evidence base of PCSK9 inhibitors compared with active treatment is much weaker (low very- to low-certainty evidence) and it is unclear whether evolocumab or alirocumab might be effectively used as replacement therapies. Related, most of the available studies preferentially enrolled people with either established CVD or at a high risk already, and evidence in low- to medium-risk settings is minimal. Finally, there is very limited evidence on any potential safety issues of both evolocumab and alirocumab. While the current evidence synthesis does not reveal any adverse signals, neither does it provide evidence against such signals. This suggests careful consideration of alternative lipid lowering treatments before prescribing PCSK9 inhibitors.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , LDL-Colesterol/sangue , Inibidores de PCSK9 , Anticolesterolemiantes/uso terapêutico , Causas de Morte , Antagonistas Colinérgicos/uso terapêutico , Ezetimiba/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Pessoa de Meia-Idade , Infarto do Miocárdio/epidemiologia , Prevenção Primária/métodos , Pró-Proteína Convertase 9/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Prevenção Secundária/métodos , Acidente Vascular Cerebral/epidemiologia , Fatores de TempoRESUMO
BACKGROUND & AIMS: Excess liver iron content is common and is linked to the risk of hepatic and extrahepatic diseases. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases. METHODS: First, we performed a genome-wide association study (GWAS) in 8,289 individuals from UK Biobank, whose liver iron level had been quantified by magnetic resonance imaging, before validating our findings in an independent cohort (nâ¯=â¯1,513 from IMI DIRECT). Second, we used Mendelian randomisation to test the causal effects of 25 predominantly metabolic traits on liver iron content. Third, we tested phenome-wide associations between liver iron variants and 770 traits and disease outcomes. RESULTS: We identified 3 independent genetic variants (rs1800562 [C282Y] and rs1799945 [H63D] in HFE and rs855791 [V736A] in TMPRSS6) associated with liver iron content that reached the GWAS significance threshold (pâ¯<5â¯×â¯10-8). The 2 HFE variants account for â¼85% of all cases of hereditary haemochromatosis. Mendelian randomisation analysis provided evidence that higher central obesity plays a causal role in increased liver iron content. Phenome-wide association analysis demonstrated shared aetiopathogenic mechanisms for elevated liver iron, high blood pressure, cirrhosis, malignancies, neuropsychiatric and rheumatological conditions, while also highlighting inverse associations with anaemias, lipidaemias and ischaemic heart disease. CONCLUSION: Our study provides genetic evidence that mechanisms underlying higher liver iron content are likely systemic rather than organ specific, that higher central obesity is causally associated with higher liver iron, and that liver iron shares common aetiology with multiple metabolic and non-metabolic diseases. LAY SUMMARY: Excess liver iron content is common and is associated with liver diseases and metabolic diseases including diabetes, high blood pressure, and heart disease. We identified 3 genetic variants that are linked to an increased risk of developing higher liver iron content. We show that the same genetic variants are linked to higher risk of many diseases, but they may also be associated with some health advantages. Finally, we use genetic variants associated with waist-to-hip ratio as a tool to show that central obesity is causally associated with increased liver iron content.
Assuntos
Estudo de Associação Genômica Ampla/métodos , Proteína da Hemocromatose/genética , Hemocromatose/genética , Hepcidinas/genética , Ferro/sangue , Fígado/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Reino UnidoRESUMO
Interleukin 6 (IL6) is an inflammatory cytokine; signaling via its receptor (IL6R) is believed to contribute to development of inflammatory bowel diseases (IBD). The single nucleotide polymorphism rs2228145 in IL6R associates with increased levels of soluble IL6R (s-IL6R), as well as reduced IL6R signaling and risk of inflammatory disorders; its effects are similar to those of a therapeutic monoclonal antibody that blocks IL6R signaling. We used the effect of rs2228145 on s-IL6R level as an indirect marker to investigate whether reduced IL6R signaling associates with risk of ulcerative colitis (UC) or Crohn's disease (CD). In a genome-wide meta-analysis of 20,550 patients with CD, 17,647 patients with UC, and more than 40,000 individuals without IBD (controls), we found that rs2228145 (scaled to a 2-fold increase in s-IL6R) was associated with reduced risk of CD (odds ratio 0.876; 95% confidence interval 0.822-0.933; P = .00003) or UC (odds ratio 0.932; 95% confidence interval 0.875-0.996; P = .036). These findings indicate that therapeutics designed to block IL6R signaling might be effective in treatment of IBD.
Assuntos
Colite Ulcerativa/genética , Doença de Crohn/genética , Predisposição Genética para Doença , Receptores de Interleucina-6/genética , Genótipo , Humanos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: The implications of different adiposity measures on cardiovascular disease etiology remain unclear. In this article, we quantify and contrast causal associations of central adiposity (waist-to-hip ratio adjusted for body mass index [WHRadjBMI]) and general adiposity (body mass index [BMI]) with cardiometabolic disease. METHODS: Ninety-seven independent single-nucleotide polymorphisms for BMI and 49 single-nucleotide polymorphisms for WHRadjBMI were used to conduct Mendelian randomization analyses in 14 prospective studies supplemented with coronary heart disease (CHD) data from CARDIoGRAMplusC4D (Coronary Artery Disease Genome-wide Replication and Meta-analysis [CARDIoGRAM] plus The Coronary Artery Disease [C4D] Genetics; combined total 66 842 cases), stroke from METASTROKE (12 389 ischemic stroke cases), type 2 diabetes mellitus from DIAGRAM (Diabetes Genetics Replication and Meta-analysis; 34 840 cases), and lipids from GLGC (Global Lipids Genetic Consortium; 213 500 participants) consortia. Primary outcomes were CHD, type 2 diabetes mellitus, and major stroke subtypes; secondary analyses included 18 cardiometabolic traits. RESULTS: Each one standard deviation (SD) higher WHRadjBMI (1 SD≈0.08 U) associated with a 48% excess risk of CHD (odds ratio [OR] for CHD, 1.48; 95% confidence interval [CI], 1.28-1.71), similar to findings for BMI (1 SD≈4.6 kg/m2; OR for CHD, 1.36; 95% CI, 1.22-1.52). Only WHRadjBMI increased risk of ischemic stroke (OR, 1.32; 95% CI, 1.03-1.70). For type 2 diabetes mellitus, both measures had large effects: OR, 1.82 (95% CI, 1.38-2.42) and OR, 1.98 (95% CI, 1.41-2.78) per 1 SD higher WHRadjBMI and BMI, respectively. Both WHRadjBMI and BMI were associated with higher left ventricular hypertrophy, glycemic traits, interleukin 6, and circulating lipids. WHRadjBMI was also associated with higher carotid intima-media thickness (39%; 95% CI, 9%-77% per 1 SD). CONCLUSIONS: Both general and central adiposity have causal effects on CHD and type 2 diabetes mellitus. Central adiposity may have a stronger effect on stroke risk. Future estimates of the burden of adiposity on health should include measures of central and general adiposity.
Assuntos
Adiposidade/genética , Distribuição da Gordura Corporal/métodos , Doença das Coronárias/genética , Diabetes Mellitus Tipo 2/genética , Análise da Randomização Mendeliana/métodos , Acidente Vascular Cerebral/genética , Doença das Coronárias/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Humanos , Estudos Longitudinais , Estudos Observacionais como Assunto/métodos , Polimorfismo de Nucleotídeo Único/genética , Estudos Prospectivos , Acidente Vascular Cerebral/epidemiologiaRESUMO
MOTIVATION: Fine mapping is a widely used approach for identifying the causal variant(s) at disease-associated loci. Standard methods (e.g. multiple regression) require individual level genotypes. Recent fine mapping methods using summary-level data require the pairwise correlation coefficients ([Formula: see text]) of the variants. However, haplotypes rather than pairwise [Formula: see text], are the true biological representation of linkage disequilibrium (LD) among multiple loci. In this article, we present an empirical iterative method, HAPlotype Regional Association analysis Program (HAPRAP), that enables fine mapping using summary statistics and haplotype information from an individual-level reference panel. RESULTS: Simulations with individual-level genotypes show that the results of HAPRAP and multiple regression are highly consistent. In simulation with summary-level data, we demonstrate that HAPRAP is less sensitive to poor LD estimates. In a parametric simulation using Genetic Investigation of ANthropometric Traits height data, HAPRAP performs well with a small training sample size (N < 2000) while other methods become suboptimal. Moreover, HAPRAP's performance is not affected substantially by single nucleotide polymorphisms (SNPs) with low minor allele frequencies. We applied the method to existing quantitative trait and binary outcome meta-analyses (human height, QTc interval and gallbladder disease); all previous reported association signals were replicated and two additional variants were independently associated with human height. Due to the growing availability of summary level data, the value of HAPRAP is likely to increase markedly for future analyses (e.g. functional prediction and identification of instruments for Mendelian randomization). AVAILABILITY AND IMPLEMENTATION: The HAPRAP package and documentation are available at http://apps.biocompute.org.uk/haprap/ CONTACT: : jie.zheng@bristol.ac.uk or tom.gaunt@bristol.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online.
Assuntos
Mapeamento Cromossômico/métodos , Haplótipos , Polimorfismo de Nucleotídeo Único , Software , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Desequilíbrio de Ligação , Característica Quantitativa Herdável , Tamanho da AmostraRESUMO
Elevated body mass index (BMI) associates with cardiometabolic traits on observational analysis, yet the underlying causal relationships remain unclear. We conducted Mendelian randomization analyses by using a genetic score (GS) comprising 14 BMI-associated SNPs from a recent discovery analysis to investigate the causal role of BMI in cardiometabolic traits and events. We used eight population-based cohorts, including 34,538 European-descent individuals (4,407 type 2 diabetes (T2D), 6,073 coronary heart disease (CHD), and 3,813 stroke cases). A 1 kg/m(2) genetically elevated BMI increased fasting glucose (0.18 mmol/l; 95% confidence interval (CI) = 0.12-0.24), fasting insulin (8.5%; 95% CI = 5.9-11.1), interleukin-6 (7.0%; 95% CI = 4.0-10.1), and systolic blood pressure (0.70 mmHg; 95% CI = 0.24-1.16) and reduced high-density lipoprotein cholesterol (-0.02 mmol/l; 95% CI = -0.03 to -0.01) and low-density lipoprotein cholesterol (LDL-C; -0.04 mmol/l; 95% CI = -0.07 to -0.01). Observational and causal estimates were directionally concordant, except for LDL-C. A 1 kg/m(2) genetically elevated BMI increased the odds of T2D (odds ratio [OR] = 1.27; 95% CI = 1.18-1.36) but did not alter risk of CHD (OR 1.01; 95% CI = 0.94-1.08) or stroke (OR = 1.03; 95% CI = 0.95-1.12). A meta-analysis incorporating published studies reporting 27,465 CHD events in 219,423 individuals yielded a pooled OR of 1.04 (95% CI = 0.97-1.12) per 1 kg/m(2) increase in BMI. In conclusion, we identified causal effects of BMI on several cardiometabolic traits; however, whether BMI causally impacts CHD risk requires further evidence.