Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 592(7853): 195-204, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828315

RESUMO

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.


Assuntos
Células/metabolismo , Edição de Genes/métodos , Genoma Humano/genética , National Institutes of Health (U.S.)/organização & administração , Animais , Terapia Genética , Objetivos , Humanos , Estados Unidos
2.
Proc Natl Acad Sci U S A ; 115(37): 9276-9281, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150400

RESUMO

This study demonstrates that significantly shortened telomeres are a hallmark of cardiomyocytes (CMs) from individuals with end-stage hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM) as a result of heritable defects in cardiac proteins critical to contractile function. Positioned at the ends of chromosomes, telomeres are DNA repeats that serve as protective caps that shorten with each cell division, a marker of aging. CMs are a known exception in which telomeres remain relatively stable throughout life in healthy individuals. We found that, relative to healthy controls, telomeres are significantly shorter in CMs of genetic HCM and DCM patient tissues harboring pathogenic mutations: TNNI3, MYBPC3, MYH7, DMD, TNNT2, and TTN Quantitative FISH (Q-FISH) of single cells revealed that telomeres were significantly reduced by 26% in HCM and 40% in DCM patient CMs in fixed tissue sections compared with CMs from age- and sex-matched healthy controls. In the cardiac tissues of the same patients, telomere shortening was not evident in vascular smooth muscle cells that do not express or require the contractile proteins, an important control. Telomere shortening was recapitulated in DCM and HCM CMs differentiated from patient-derived human-induced pluripotent stem cells (hiPSCs) measured by two independent assays. This study reveals telomere shortening as a hallmark of genetic HCM and DCM and demonstrates that this shortening can be modeled in vitro by using the hiPSC platform, enabling drug discovery.


Assuntos
Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica Familiar , Divisão Celular , Células-Tronco Pluripotentes Induzidas , Proteínas Musculares , Mutação , Encurtamento do Telômero , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/metabolismo , Cardiomiopatia Hipertrófica Familiar/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
3.
Dev Cell ; 39(4): 480-490, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27840107

RESUMO

Activation of complex molecular programs in specific cell lineages governs mammalian heart development, from a primordial linear tube to a four-chamber organ. To characterize lineage-specific, spatiotemporal developmental programs, we performed single-cell RNA sequencing of >1,200 murine cells isolated at seven time points spanning embryonic day 9.5 (primordial heart tube) to postnatal day 21 (mature heart). Using unbiased transcriptional data, we classified cardiomyocytes, endothelial cells, and fibroblast-enriched cells, thus identifying markers for temporal and chamber-specific developmental programs. By harnessing these datasets, we defined developmental ages of human and mouse pluripotent stem-cell-derived cardiomyocytes and characterized lineage-specific maturation defects in hearts of mice with heterozygous mutations in Nkx2.5 that cause human heart malformations. This spatiotemporal transcriptome analysis of heart development reveals lineage-specific gene programs underlying normal cardiac development and congenital heart disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Análise de Célula Única/métodos , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Haploinsuficiência/genética , Átrios do Coração/citologia , Ventrículos do Coração/citologia , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Análise de Sequência de RNA , Fatores de Tempo , Transcriptoma/genética
4.
Science ; 349(6251): 982-6, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26315439

RESUMO

Human mutations that truncate the massive sarcomere protein titin [TTN-truncating variants (TTNtvs)] are the most common genetic cause for dilated cardiomyopathy (DCM), a major cause of heart failure and premature death. Here we show that cardiac microtissues engineered from human induced pluripotent stem (iPS) cells are a powerful system for evaluating the pathogenicity of titin gene variants. We found that certain missense mutations, like TTNtvs, diminish contractile performance and are pathogenic. By combining functional analyses with RNA sequencing, we explain why truncations in the A-band domain of TTN cause DCM, whereas truncations in the I band are better tolerated. Finally, we demonstrate that mutant titin protein in iPS cell-derived cardiomyocytes results in sarcomere insufficiency, impaired responses to mechanical and ß-adrenergic stress, and attenuated growth factor and cell signaling activation. Our findings indicate that titin mutations cause DCM by disrupting critical linkages between sarcomerogenesis and adaptive remodeling.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Conectina/genética , Conectina/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Mutação de Sentido Incorreto , Miócitos Cardíacos/fisiologia , Sarcômeros/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Cardiomiopatia Dilatada/patologia , Células Cultivadas , Conectina/química , Frequência Cardíaca , Humanos , Isoproterenol/farmacologia , Proteínas Mutantes/química , Proteínas Mutantes/fisiologia , Contração Miocárdica , RNA/genética , RNA/metabolismo , Sarcômeros/ultraestrutura , Análise de Sequência de RNA , Transdução de Sinais , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA