RESUMO
The mid-latitude westerly winds of the Southern Hemisphere play a central role in the global climate system via Southern Ocean upwelling1, carbon exchange with the deep ocean2, Agulhas leakage (transport of Indian Ocean waters into the Atlantic)3 and possibly Antarctic ice-sheet stability4. Meridional shifts of the Southern Hemisphere westerly winds have been hypothesized to occur5,6 in parallel with the well-documented shifts of the intertropical convergence zone7 in response to Dansgaard-Oeschger (DO) events- abrupt North Atlantic climate change events of the last ice age. Shifting moisture pathways to West Antarctica8 are consistent with this view but may represent a Pacific teleconnection pattern forced from the tropics9. The full response of the Southern Hemisphere atmospheric circulation to the DO cycle and its impact on Antarctic temperature remain unclear10. Here we use five ice cores synchronized via volcanic markers to show that the Antarctic temperature response to the DO cycle can be understood as the superposition of two modes: a spatially homogeneous oceanic 'bipolar seesaw' mode that lags behind Northern Hemisphere climate by about 200 years, and a spatially heterogeneous atmospheric mode that is synchronous with abrupt events in the Northern Hemisphere. Temperature anomalies of the atmospheric mode are similar to those associated with present-day Southern Annular Mode variability, rather than the Pacific-South American pattern. Moreover, deuterium-excess records suggest a zonally coherent migration of the Southern Hemisphere westerly winds over all ocean basins in phase with Northern Hemisphere climate. Our work provides a simple conceptual framework for understanding circum-Antarctic temperature variations forced by abrupt Northern Hemisphere climate change. We provide observational evidence of abrupt shifts in the Southern Hemisphere westerly winds, which have previously documented1-3 ramifications for global ocean circulation and atmospheric carbon dioxide. These coupled changes highlight the necessity of a global, rather than a purely North Atlantic, perspective on the DO cycle.
RESUMO
Sulphate aerosols, particularly micrometre-sized particles of sulphate salt and sulphate-adhered dust, can act as cloud condensation nuclei, leading to increased solar scattering that cools Earth's climate. Evidence for such a coupling may lie in the sulphate record from polar ice cores, but previous analyses of melted ice-core samples have provided only sulphate ion concentrations, which may be due to sulphuric acid. Here we present profiles of sulphate salt and sulphate-adhered dust fluxes over the past 300,000 years from the Dome Fuji ice core in inland Antarctica. Our results show a nearly constant flux of sulphate-adhered dust through glacial and interglacial periods despite the large increases in total dust flux during glacial maxima. The sulphate salt flux, however, correlates inversely with temperature, suggesting a climatic coupling between particulate sulphur and temperature. For example, the total sulphate salt flux during the Last Glacial Maximum averages 5.78 mg m(-2) yr(-1), which is almost twice the Holocene value. Although it is based on a modern analogue with considerable uncertainties when applied to the ice-core record, this analysis indicates that the glacial-to-interglacial decrease in sulphate would lessen the aerosol indirect effects on cloud lifetime and albedo, leading to an Antarctic warming of 0.1 to 5 kelvin.
RESUMO
The Last Interglacial (LIG: 130,000-115,000 years ago) was a period of warmer global mean temperatures and higher and more variable sea levels than the Holocene (11,700-0 years ago). Therefore, a better understanding of Antarctic ice-sheet dynamics during this interval would provide valuable insights for projecting sea-level change in future warming scenarios. Here we present a high-resolution record constraining ice-sheet changes in the Wilkes Subglacial Basin (WSB) of East Antarctica during the LIG, based on analysis of sediment provenance and an ice melt proxy in a marine sediment core retrieved from the Wilkes Land margin. Our sedimentary records, together with existing ice-core records, reveal dynamic fluctuations of the ice sheet in the WSB, with thinning, melting, and potentially retreat leading to ice loss during both early and late stages of the LIG. We suggest that such changes along the East Antarctic Ice Sheet margin may have contributed to fluctuating global sea levels during the LIG.
RESUMO
The radiocarbon ((14)C) of total carbon (TC) in atmospheric fine particles was measured at 6 h or 12 h intervals at two sites, 50 and 100 km downwind from Tokyo, Japan (Kisai and Maebashi) in summer 2007. The percent modern carbon (pMC) showed clear diurnal variations with minimums in the daytime. The mean pMC values at Maebashi were 28 ± 7 in the daytime and 45 ± 16 at night (37 ± 15 for the overall period). Those at Kisai were 26 ± 9 in the daytime and 44 ± 8 at night (37 ± 12 for the overall period). This data indicates that fossil sources were major contributors to the daytime TC, while fossil and modern sources had comparable contributions to nighttime TC in the suburban areas. At both sites, the concentration of fossil carbon as well as O(3) and the estimated secondary organic carbon increased in the daytime. These results suggest that fossil sources around Tokyo contributed significantly to the high daytime concentration of secondary organic aerosols (SOA) at the two suburban sites. A comparison of pMC and the ratio of elemental carbon/TC from our particulate samples with those from three end-member sources corroborates the dominant role of fossil SOA in the daytime.
Assuntos
Movimentos do Ar , Ritmo Circadiano , Material Particulado/análise , Estações do Ano , Carbono/análise , Radioisótopos de Carbono , Fósseis , Compostos Orgânicos/análise , Ozônio/análise , TóquioRESUMO
Atmospheric sea-salt and halogen cycles play important roles in atmospheric science and chemistry including cloud processes and oxidation capacity in the Antarctic troposphere. This paper presents a review and summarizes current knowledge related to sea-salt and halogen chemistry in the Antarctic. First, presented are the seasonal variations and size distribution of sea-salt aerosols (SSAs). Second, SSA origins and sea-salt fractionation on sea-ice and ice sheets on the Antarctic continent are presented and discussed. Third, we discuss SSA release from the cryosphere. Fourth, we present SSA dispersion in the Antarctic troposphere and transport into inland areas. Fifth, heterogeneous reactions on SSAs as a source of reactive halogen species and their relationship with atmospheric chemistry are shown and discussed. Finally, we attempt to propose an outlook for obtaining better knowledge related to sea-salt and halogen chemistry and their effects on the Antarctic and the Arctic.
Assuntos
Halogênios , Camada de Gelo , Aerossóis , Regiões Antárticas , Regiões ÁrticasRESUMO
Oxidative potential is an important property of particulate matter (PM) that has been regarded as a more health-relevant metric than PM mass. We investigated the oxidative potential of size-segregated PM and effects of Asian dust events in Fukuoka, western Japan. Aerosol particles with diameters smaller and larger than 2.5 µm (fine and coarse particles, respectively) were collected continually from 16 March through 26 May 2016. The oxidative potential was analyzed using dithiothreitol (DTT) assay; chemical components of PM were also found. Air-volume normalized oxidative potential quantified by DTT assay (DTTv) was significantly higher during Asian dust events than during nondust-event days. The mean DTTv of fine and coarse particles during Asian dust events were, respectively, 1.5 and 2.7 times higher than that during nonevent days. DTTv of fine particles was highly correlated with elements dominated by anthropogenic combustion sources and with the elements emitted from multiple sources including mineral dust and combustion sources. DTTv of coarse particles strongly correlated with the mineral dust derived elements, suggesting concentration of mineral dust particles as an important controlling factor especially for the oxidative potential of the coarse particles. We estimated the contributions of water-soluble transition metals to the oxidative potential of PM. Water-soluble transition metals (mainly Cu and Mn) can explain only approximately 37% and 60% of the measured oxidative potential of fine and coarse particles, respectively, suggesting substantial contributions of aerosol components other than water-soluble transition metals such as quinones and insoluble minerals.
RESUMO
The δD temperature proxy in Antarctic ice cores varies in parallel with CO2 through glacial cycles. However, these variables display a puzzling asynchrony. Well-dated records of Southern Ocean temperature will provide crucial information because the Southern Ocean is likely key in regulating CO2 variations. Here, we perform multiple isotopic analyses on an Antarctic ice core and estimate temperature variations at this site and in the oceanic moisture source over the past 720,000 years, which extend the longest records by 300,000 years. Antarctic temperature is affected by large variations in local insolation that are induced by obliquity. At the obliquity periodicity, the Antarctic and ocean temperatures lag annual mean insolation. Further, the magnitude of the phase lag is minimal during low eccentricity periods, suggesting that secular changes in the global carbon cycle and the ocean circulation modulate the phase relationship among temperatures, CO2 and insolation in the obliquity frequency band.
RESUMO
Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets.
RESUMO
We compared the status of carbonaceous aerosols in Tokyo before and after the implementation of a diesel vehicle regulation intended to reduce the quantity of particulate carbon from diesel engines in one of the largest scale ever attempts at vehicle exhaust control. Radiocarbon (14C) in elemental carbon (EC) and total carbon (TC) were analyzed to identify fossil fuel carbonaceous particles emitted from diesel-powered vehicles. One-sided paired-month t-tests showed no distinct difference in the absolute concentrations of particles in terms of total mass (19.5 to 18.0 microg m(-3); p = 0.321), EC (3.6 to 3.3 microg m(-3); p = 0.272), and TC (6.3 to 6.2 microg m(-3); p = 0.418) for the finest particles (d(a) < 1.1 microm) after the implementation of the regulation. The ratios of the concentrations of the chemical constituents were, however, altered after the regulation. EC/TC was significantly decreased from 56.7% to 50.2% (p = 0.039). Although it was not statistically significant, the percentage of fossil carbon in EC also decreased (67.8% to 63.8%; p = 0.104). Since EC is predominantly of combustion origin, the observed decrease was likely due to the decrease in fossil EC emissions from diesel-powered vehicles. The decrease in EC/TC after the implementation of the regulation was also likely to have resulted from attachment to diesel vehicle exhaust systems of particulate filters as required as part of the regulation by the Tokyo Metropolitan Government. The EC/TC of fossil carbon of the finest particles decreased from 66.2% to 55.2% (p = 0.066), but EC/TC of biomass carbon did not decrease but rose slightly from 43.6% to 44.5% (p > 0.5). Thus, the relative ratios of components of carbonaceous aerosol particles, such as 14C, could provide a better understanding of the atmospheric pollution status, despite short-term fluctuations, than do measurements of absolute concentrations.
Assuntos
Aerossóis/análise , Carbono/análise , Emissões de Veículos/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Carbono/química , Radioisótopos de Carbono , Monitoramento Ambiental/métodos , Tamanho da Partícula , Fatores de Tempo , Tóquio , Emissões de Veículos/legislação & jurisprudênciaRESUMO
The number concentration and number size distributions of ultrafine particles were measured with a Scanning Mobility Particle Sizer (SMPS) at a roadside in early autumn and winter, and the results are discussed with regard to the contribution of traffic activity and meteorological conditions. The number concentration of the <50 nm fraction increased in the morning under calm wind conditions, and this increase corresponded with the increase in total traffic volume and nitric oxide. The increase in ultrafine particles was influenced not only by the increase in total traffic but also by the high contribution of diesel engine vehicles. The number concentration decreased around noon as the wind speed increased, although the total traffic and the number of diesel engine vehicles were at the same level as in the morning. The number size distribution in the morning was bimodal, with a first peak diameter of around 30 nm and a second of around 90 nm in both periods. The volatility of ultrafine particles was investigated using a thermal denuder operating at 250 degrees C. The first peak consisted mainly of volatile components, whereas the second one consisted of solid materials plus some volatile components. These results were consistent with the mass size distribution of elemental and organic carbon. The number size distribution with a peak diameter of around 30 nm was also observed in the afternoon at a suburban site; however, it was produced not by vehicle emissions directly but by photochemical reactions. Although a relatively high number concentration was also observed in the morning at the suburban site due to vehicle emission, the peak diameter ranged from 40 to 90 nm, which was larger than at the roadside.