Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769371

RESUMO

Aquaporin-4 (AQP4) is the most abundant water channel in the central nervous system and plays a fundamental role in maintaining water homeostasis there. In adult mice, AQP4 is located mainly in ependymal cells, in the endfeet of perivascular astrocytes, and in the glia limitans. Meanwhile, its expression, location, and function throughout postnatal development remain largely unknown. Here, the expression of AQP4 mRNA was studied by in situ hybridization and RT-qPCR, and the localization and amount of protein was studied by immunofluorescence and western blotting, both in the brain and spinal cord. For this, wild-type mice of the C57BL/6 line, aged 1, 3, 7, 11, 20, and 60 days, and 18 months were used. The results showed a change in both the expression and location of AQP4 in postnatal development compared to those during adult life. In the early stages of postnatal development it appears in highly myelinated areas, such as the corpus callosum or cerebellum, and as the animal grows, it disappears from these areas, passing through the cortical regions of the forebrain and concentrating around the blood vessels. These findings suggest an unprecedented possible role for AQP4 in the early cell differentiation process, during the first days of life in the newborn animal, which will lead to myelination.


Assuntos
Aquaporina 4 , Substância Cinzenta , Camundongos , Animais , Substância Cinzenta/metabolismo , Camundongos Endogâmicos C57BL , Aquaporina 4/genética , Aquaporina 4/metabolismo , Encéfalo/metabolismo , Medula Espinal/metabolismo , Astrócitos/metabolismo
2.
Fluids Barriers CNS ; 21(1): 53, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956598

RESUMO

AQP4 is expressed in the endfeet membranes of subpial and perivascular astrocytes and in the ependymal cells that line the ventricular system. The sporadic appearance of obstructive congenital hydrocephalus (OCHC) has been observed in the offspring of AQP4-/- mice (KO) due to stenosis of Silvio's aqueduct. Here, we explore whether the lack of AQP4 expression leads to abnormal development of ependymal cells in the aqueduct of mice. We compared periaqueductal samples from wild-type and KO mice. The microarray-based transcriptome analysis reflected a large number of genes with differential expression (809). Gene sets (GS) associated with ependymal development, ciliary function and the immune system were specially modified qPCR confirmed reduced expression in the KO mice genes: (i) coding for transcription factors for ependymal differentiation (Rfx4 and FoxJ1), (ii) involved in the constitution of the central apparatus of the axoneme (Spag16 and Hydin), (iii) associated with ciliary assembly (Cfap43, Cfap69 and Ccdc170), and (iv) involved in intercellular junction complexes of the ependyma (Cdhr4). By contrast, genes such as Spp1, Gpnmb, Itgax, and Cd68, associated with a Cd11c-positive microglial population, were overexpressed in the KO mice. Electron microscopy and Immunofluorescence of vimentin and γ-tubulin revealed a disorganized ependyma in the KO mice, with changes in the intercellular complex union, unevenly orientated cilia, and variations in the planar cell polarity of the apical membrane. These structural alterations translate into reduced cilia beat frequency, which might alter cerebrospinal fluid movement. The presence of CD11c + microglia cells in the periaqueductal zone of mice during the first postnatal week is a novel finding. In AQP4-/- mice, these cells remain present around the aqueduct for an extended period, showing peak expression at P11. We propose that these cells play an important role in the normal development of the ependyma and that their overexpression in KO mice is crucial to reduce ependyma abnormalities that could otherwise contribute to the development of obstructive hydrocephalus.


Assuntos
Aquaporina 4 , Epêndima , Hidrocefalia , Camundongos Knockout , Microglia , Animais , Epêndima/metabolismo , Epêndima/patologia , Hidrocefalia/metabolismo , Hidrocefalia/genética , Hidrocefalia/patologia , Microglia/metabolismo , Aquaporina 4/metabolismo , Aquaporina 4/genética , Camundongos , Aqueduto do Mesencéfalo/metabolismo , Aqueduto do Mesencéfalo/patologia , Antígenos CD11/metabolismo , Antígenos CD11/genética , Camundongos Endogâmicos C57BL
3.
PLoS One ; 16(10): e0258165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34597351

RESUMO

Brain aquaporin 1 (AQP1) and AQP4 are involved in cerebrospinal fluid (CSF) homeostasis and might participate in the origin of hydrocephalus. Studies have shown alterations of perivascular AQP4 expression in idiopathic normal pressure hydrocephalus (iNPH) and Alzheimer's disease (AD). Due to the overlapping of clinical signs between iNPH and certain neurological conditions, mainly AD, specific biomarkers might improve the diagnostic accuracy for iNPH. The goal of the present study was to analyze and quantify the presence of AQP1 and AQP4 in the CSF of patients with iNPH and AD to determine whether these proteins can be used as biomarkers of iNPH. We examined AQP1 and AQP4 protein levels in the CSF of 179 participants (88 women) classified into 5 groups: possible iNPH (81 participants), hydrocephalus associated with other neurological disorders (13 participants), AD (41 participants), non-AD dementia (32 participants) and healthy controls (12 participants). We recorded each participant's demographic and clinical variables and indicated, when available in the clinical history, the record of cardiovascular and respiratory complications. An ELISA showed virtually no AQP content in the CSF. Information on the vascular risk factors (available for 61 patients) confirmed some type of vascular risk factor in 86% of the patients with possible iNPH and 58% of the patients with AD. In conclusion, the ELISA analysis showed insufficient sensitivity to detect the presence of AQP1 and AQP4 in CSF, ruling out the possible use of these proteins as biomarkers for diagnosing iNPH.


Assuntos
Doença de Alzheimer/diagnóstico , Aquaporina 1/líquido cefalorraquidiano , Aquaporina 4/líquido cefalorraquidiano , Diagnóstico Diferencial , Hidrocefalia de Pressão Normal/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Biomarcadores/líquido cefalorraquidiano , Feminino , Humanos , Hidrocefalia de Pressão Normal/líquido cefalorraquidiano , Hidrocefalia de Pressão Normal/genética , Hidrocefalia de Pressão Normal/patologia , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/genética
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3515-3526, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30293570

RESUMO

Aquaporin-4, present in ependymal cells, in glia limiting and abundantly in pericapillary astrocyte foot processes, and aquaporin-1, expressed in choroid plexus epithelial cells, play an important role in cerebrospinal fluid production and may be involved in the pathophysiology of age-dependent hydrocephalus. The finding that brain aquaporins expression is regulated by low oxygen tension led us to investigate how hypoxia and elevated levels of cerebral aquaporins may result in an increase in cerebrospinal fluid production that could be associated with a hydrocephalic condition. Here we have explored, in young and aged mice exposed to hypoxia, whether aquaporin-4 and aquaporin-1 participate in the development of age-related hydrocephalus. Choroid plexus, striatum, cortex and ependymal tissue were analyzed separately both for mRNA and protein levels of aquaporins. Furthermore, parameters such as total ventricular volume, intraventricular pressure, cerebrospinal fluid outflow rate, ventricular compliance and cognitive function were studied in wild type, aquaporin-1 and aquaporin-4 knock-out animals subjected to hypoxia or normoxia. Our data demonstrate that hypoxia is involved in the development of age-related hydrocephalus by a process that depends on aquaporin-4 channels as a main route for cerebrospinal fluid movement. Significant increases in aquaporin-4 expression that occur over the course of animal aging, together with a reduced cerebrospinal fluid outflow rate and ventricular compliance, contribute to produce more severe hydrocephalus related to hypoxic events in aged mice, with a notable impairment in cognitive function. These results indicate that physiological events and/or pathological conditions presenting with cerebral hypoxia/ischemia contribute to the development of chronic adult hydrocephalus.


Assuntos
Envelhecimento/líquido cefalorraquidiano , Envelhecimento/genética , Aquaporina 4/genética , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/genética , Envelhecimento/metabolismo , Animais , Aquaporina 1/genética , Aquaporina 1/metabolismo , Aquaporina 4/metabolismo , Encéfalo/metabolismo , Pressão do Líquido Cefalorraquidiano , Modelos Animais de Doenças , Humanos , Hidrocefalia/metabolismo , Camundongos , Regulação para Cima , Pressão Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA