Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 116(1): 21, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33751227

RESUMO

Myocardial connexin 43 (Cx43) forms gap junctions and hemichannels, and is also present within subsarcolemmal mitochondria. The protein is phosphorylated by several kinases including mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and casein kinase 1 (CK1). A reduction in Cx43 content abrogates myocardial infarct size reduction by ischemic preconditioning (IPC). The present study characterizes the contribution of Cx43 phosphorylation towards mitochondrial function, hemichannel activity, and the cardioprotection by IPC in wild-type (WT) mice and in mice in which Cx43-phosphorylation sites targeted by above kinases are mutated to non-phosphorylatable residues (Cx43MAPKmut, Cx43PKCmut, and Cx43CK1mut mice). The amount of Cx43 in the left ventricle and in mitochondria was reduced in all mutant strains compared to WT mice and Cx43 phosphorylation was altered at residues not directly targeted by the mutations. Whereas complex 1 respiration was reduced in all strains, complex 2 respiration was decreased in Cx43CK1mut mice only. In Cx43 epitope-mutated mice, formation of reactive oxygen species and opening of the mitochondrial permeability transition pore were not affected. The hemichannel open probability was reduced in Cx43PKCmut and Cx43CK1mut but not in Cx43MAPKmut cardiomyocytes. Infarct size in isolated saline-perfused hearts after ischemia/reperfusion (45 min/120 min) was comparable between genotypes and was significantly reduced by IPC (3 × 3 min ischemia/5 min reperfusion) in WT, Cx43MAPKmut, and Cx43PKCmut, but not in Cx43CK1mut mice, an effect independent from the amount of Cx43 and the probability of hemichannel opening. Taken together, our study shows that alterations of Cx43 phosphorylation affect specific cellular functions and highlights the importance of Cx43 phosphorylation by CK1 for IPC's cardioprotection.


Assuntos
Caseína Quinase I/metabolismo , Conexina 43/metabolismo , Precondicionamento Isquêmico Miocárdico , Mitocôndrias Cardíacas/enzimologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/enzimologia , Animais , Conexina 43/genética , Modelos Animais de Doenças , Preparação de Coração Isolado , Camundongos Mutantes , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Fosforilação
2.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302436

RESUMO

The leading cause of death in pulmonary arterial hypertension (PAH) is right ventricular (RV) failure (RVF). Reactive oxygen species (ROS) have been suggested to play a role in the development of RV hypertrophy (RVH) and the transition to RVF. The hydrogen peroxide-generating protein p66shc has been associated with left ventricular (LV) hypertrophy but its role in RVH is unclear. The purpose of this study was to determine whether genetic deletion of p66shc affects the development and/or progression of RVH and RVF in the pulmonary artery banding (PAB) model of RV pressure overload. The impact of p66shc on mitochondrial ROS formation, RV cardiomyocyte function, as well as on RV morphology and function were studied three weeks after PAB or sham operation. PAB in wild type mice did not affect mitochondrial ROS production or RV cardiomyocyte function, but induced RVH and impaired cardiac function. Genetic deletion of p66shc did also not alter basal mitochondrial ROS production or RV cardiomyocyte function, but impaired RV cardiomyocyte shortening was observed following PAB. The development of RVH and RVF following PAB was not affected by p66shc deletion. Thus, our data suggest that p66shc-derived ROS are not involved in the development and progression of RVH or RVF in PAH.


Assuntos
Cardiomegalia/metabolismo , Ventrículos do Coração/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Animais , Cardiomegalia/etiologia , Células Cultivadas , Ventrículos do Coração/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Hipertensão Arterial Pulmonar/complicações , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética
3.
Basic Res Cardiol ; 109(5): 433, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25115184

RESUMO

S-nitrosation (SNO) of connexin 43 (Cx43)-formed channels modifies dye uptake in astrocytes and gap junctional communication in endothelial cells. Apart from forming channels at the plasma membrane of several cell types, Cx43 is also located at the inner membrane of myocardial subsarcolemmal mitochondria (SSM), but not in interfibrillar mitochondria (IFM). The absence or pharmacological blockade of mitochondrial Cx43 (mtCx43) reduces dye and potassium uptake. Lack of mtCx43 is associated with loss of endogenous cardioprotection by ischemic preconditioning (IPC), which is mediated by formation of reactive oxygen species (ROS). Whether or not mitochondrial Lucifer Yellow (LY), ion uptake, or ROS generation are affected by SNO of mtCx43 and whether or not cardioprotective interventions affect SNO of mtCx43 remains unknown. In SSM from rat hearts, application of NO donors (48 nmol to 1 mmol) increased LY uptake (0.5 mmol SNAP 38.4 ± 7.1 %, p < 0.05; 1 mmol GSNO 28.1 ± 7.4 %, p < 0.05) and the refilling rate of potassium (SNAP 227.9 ± 30.1 %, p < 0.05; GSNO 122.6 ± 28.1 %, p < 0.05). These effects were absent following blockade of Cx43 hemichannels by carbenoxolone as well as in IFM lacking Cx43. Unlike potassium, the sodium permeability was not affected by application of NO. Furthermore, mitochondrial ROS formation was increased following NO application compared to control SSM (0.5 mmol SNAP 22.9 ± 1.8 %, p < 0.05; 1 mmol GSNO 40.6 ± 7.1 %, p < 0.05), but decreased in NO treated IFM compared to control (0.5 mmol SNAP 14.4 ± 4 %, p < 0.05; 1 mmol GSNO 13.8 ± 4 %, p < 0.05). NO donor administration to isolated SSM increased SNO of mtCx43 by 109.2 ± 15.8 %. Nitrite application (48 nmol) to mice was also associated with elevated SNO of mtCx43 by 59.3 ± 18.2 % (p < 0.05). IPC by four cycles of 5 min of ischemia and 5 min of reperfusion increased SNO of mtCx43 by 41.6 ± 1.7 % (p < 0.05) when compared to control perfused rat hearts. These data suggest that SNO of mtCx43 increases mitochondrial permeability, especially for potassium and leads to increased ROS formation. The increased amount of SNO mtCx43 by IPC or nitrite administration may link NO and Cx43 in the signal transduction cascade of cardioprotective interventions.


Assuntos
Conexina 43/metabolismo , Precondicionamento Isquêmico Miocárdico , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Western Blotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitrosação , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Espécies Reativas de Oxigênio
4.
Free Radic Biol Med ; 165: 14-23, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476795

RESUMO

Monoamine oxidase B (MAO-B), a protein localized at the outer mitochondrial membrane, catalyzes the oxidative deamination of biogenic amines thereby producing reactive oxygen species (ROS). Increased ROS formation contributes to myocardial ischemia/reperfusion (I/R); however, the importance of different ROS producing enzymes for increased I/R-induced ROS formation and the subsequent I/R injury is still a matter of debate. Here we describe the first cardiomyocytes-specific MAO-B knockout mouse and test the hypothesis that lack of cardiomyocyte MAO-B protects the heart from I/R injury. A cardiac-specific and tamoxifen-inducible MAO-B knockout mouse (MAO-B KO) was generated using the Cre/lox system; Cre-negative MAO-Bfl/fl littermates served as controls (WT). Lack of MAO-B was verified by Western blot and immunohistochemistry. Cardiac function of MAO-B KO and WT was analyzed by echocardiography, quantification of mitochondrial ROS production, and measurement of myocardial infarct size (in % of ventricle) in hearts exposed to global I/R using the Langendorff technique. MAO-B protein expression was significantly down-regulated in MAO-B KO mice after two weeks of tamoxifen feeding followed by ten weeks of feeding with normal chow. ROS formation stimulated by the MAO-B-specific substrate ß-phenylethylamin (PEA; 250 µM) was significantly lower in mitochondria isolated from MAO-B KO compared to WT hearts (WT 4.5 ± 0.8 a. u.; MAO-B KO 1.2 ± 0.3 a. u.). Echocardiography revealed no significant differences in LV dimensions as well as ejection fraction (EF) between WT and MAO-B KO mice (EF: WT 67.3 ± 8.8%; MAO-B KO 67.7 ± 6.5%). After I/R, infarct size was significantly lower in MAO-B KO hearts (WT 69.3 ± 15.1%; MAO-B KO 46.8 ± 12.0%). CONCLUSION: Lack of cardiomyocytes-specific MAO-B reduces infarct size suggesting that MAO-B activity contributes to acute reperfusion injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoaminoxidase/genética , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos , Espécies Reativas de Oxigênio
5.
Cells ; 9(3)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120777

RESUMO

The cardiac expression of the mitochondrial uncoupling protein (UCP)-2 is increased in patients with heart failure. However, the underlying causes as well as the possible consequences of these alterations during the transition from hypertrophy to heart failure are still unclear. To investigate the role of UCP-2 mechanistically, expression of UCP-2 was silenced by small interfering RNA in adult rat ventricular cardiomyocytes. We demonstrate that a downregulation of UCP-2 by siRNA in cardiomyocytes preserves contractile function in the presence of angiotensin II. Furthermore, silencing of UCP-2 was associated with an upregulation of glucose transporter type (Glut)-4, increased glucose uptake, and reduced intracellular lactate levels, indicating improvement of the oxidative glucose metabolism. To study this adaptation in vivo, spontaneously hypertensive rats served as a model for cardiac hypertrophy due to pressure overload. During compensatory hypertrophy, we found low UCP-2 levels with an upregulation of Glut-4, while the decompensatory state with impaired function was associated with an increase of UCP-2 and reduced Glut-4 expression. By blocking the aldosterone receptor with spironolactone, both cardiac function as well as UCP-2 and Glut-4 expression levels of the compensated phase could be preserved. Furthermore, we were able to confirm this by left ventricular (LV) biopsies of patients with end-stage heart failure. The results of this study show that UCP-2 seems to impact the cardiac glucose metabolism during the transition from hypertrophy to failure by affecting glucose uptake through Glut-4. We suggest that the failing heart could benefit from low UCP-2 levels by improving the efficiency of glucose oxidation. For this reason, UCP-2 inhibition might be a promising therapeutic strategy to prevent the development of heart failure.


Assuntos
Glucose/metabolismo , Insuficiência Cardíaca/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiomegalia/complicações , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Sobrevivência Celular/efeitos dos fármacos , Doença Crônica , Feminino , Transportador de Glucose Tipo 4/metabolismo , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/patologia , Humanos , Hipertensão/complicações , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Iridoides/farmacologia , Masculino , Mitocôndrias Cardíacas/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Wistar , Espironolactona/farmacologia
6.
Cardiovasc Res ; 115(7): 1217-1227, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30850841

RESUMO

AIMS: The role of uncoupling protein 2 (UCP2) in cardiac adaptation to pressure overload remains unclear. In a classical model of left ventricular pressure overload genetic deletion of UCP2 (UCP2-/-) protected against cardiac hypertrophy and failure. However, in UCP2-/- mice increased proliferation of pulmonary arterial smooth muscle cells induces mild pulmonary hypertension, right ventricular (RV) hypertrophy, and reduced cardiac output. This suggests a different role for UCP2 in RV and left ventricular adaptation to pressure overload. To clarify this situation in more detail UCP2-/- and wild-type mice were exposed to pulmonary arterial banding (PAB). METHODS AND RESULTS: Mice were analysed (haemodynamics, morphometry, and echocardiography) 3 weeks after PAB or sham surgery. Myocytes and non-myocytes were isolated and analysed separately. Cell shortening of myocytes and fura-2 loading of cardiomyocytes were used to characterize their function. Brd assay was performed to study fibroblast proliferation. Isolated mitochondria were analysed to investigate the role of UCP2 for reactive oxygen species (ROS) production. UCP2 mRNA was 2.7-fold stronger expressed in RV myocytes than in left ventricular myocytes and stronger expressed in non-myocytes compared with myocytes. Three weeks after PAB, cardiac output was reduced in wild type but preserved in UCP2-/- mice. UCP2-/- had increased RV wall thickness, but lower RV internal diameters and displayed a significant stronger fibrosis. Cardiac fibroblasts from UCP2-/- had reduced proliferation rates but higher collagen-1 expression. Myocytes isolated from mice after PAB banding showed preserved function that was further improved by UCP2-/-. Mitochondrial ROS production and respiration was similar between UCP2-/- or wild-type hearts. CONCLUSION: Despite a mild pulmonary hypertension in UCP2-/- mice, hearts from these mice are well preserved against additional pressure overload (severe pulmonary hypertension). This-at least in part-depends on different behaviour of non-myocytes (fibroblasts).


Assuntos
Fibroblastos/metabolismo , Inativação Gênica , Insuficiência Cardíaca/prevenção & controle , Hipertensão Pulmonar/prevenção & controle , Miócitos Cardíacos/metabolismo , Proteína Desacopladora 2/deficiência , Função Ventricular Direita , Remodelação Ventricular , Animais , Células Cultivadas , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Fibroblastos/patologia , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/genética , Função Ventricular Esquerda
7.
Front Physiol ; 9: 1799, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618811

RESUMO

Reactive oxygen species (ROS) exert signaling character (redox signaling), or damaging character (oxidative stress) on cardiac tissue depending on their concentration and/or reactivity. The steady state of ROS concentration is determined by the interplay between its production (mitochondrial, cytosolic, and sarcolemmal enzymes) and ROS defense enzymes (mitochondria, cytosol). Recent studies suggest that ROS regulation is different in the left and right ventricle of the heart, specifically by a different activity of superoxide dismutase (SOD). Mitochondrial ROS defense seems to be lower in right ventricular tissue compared to left ventricular tissue. In this review we summarize the current evidence for heart chamber specific differences in ROS regulation that may play a major role in an observed inability of the right ventricle to compensate for cardiac stress such as pulmonary hypertension. Based on the current knowledge regimes to increase ROS defense in right ventricular tissue should be in the focus for the development of future therapies concerning right heart failure.

8.
Antioxid Redox Signal ; 23(14): 1106-12, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26237157

RESUMO

NADPH oxidases (NOXs) represent the only known dedicated source of reactive oxygen species (ROS) and thus a prime therapeutic target. Type 4 NOX is unique as it produces H2O2, is constitutively active, and has been suggested to localize to cardiac mitochondria, thus possibly linking mitochondrial and NOX-derived ROS formation. The aim of this study was to identify NOX4-binding proteins and examine the possible physiological localization of NOX4 to mitochondria and its impact on mitochondrial ROS formation. We here provide evidence that NOX4 can, in principle, enter protein-protein interactions with mitochondrial complex I NADH dehydrogenase subunits, 1 and 4L. However, under physiological conditions, NOX4 protein was neither detectable in the kidney nor in cardiomyocyte mitochondria. The NOX inhibitor, GKT136901, slightly reduced ROS formation in cardiomyocyte mitochondria, but this effect was observed in both wild-type and Nox4(-/-) mice. NOX4 may thus associate with mitochondrial complex I proteins, but in cardiac and renal mitochondria under basal conditions, expression is beyond our detection limits and does not contribute to ROS formation.


Assuntos
NADPH Oxidases/metabolismo , Animais , Complexo I de Transporte de Elétrons/metabolismo , Limite de Detecção , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/enzimologia , NADPH Oxidase 4 , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA