Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 301(1-2): 216-24, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19014997

RESUMO

Lowering local estradiol concentration by inhibition of the estradiol-synthesizing enzyme 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) has been proposed as a promising new therapeutic option to treat estrogen-dependent diseases like endometriosis and breast cancer. Based on a molecular modelling approach we designed and synthesized novel C15-substituted estrone derivatives. Subsequent biological evaluation revealed that potent inhibitors of human 17beta-HSD1 can be identified in this compound class. The best, compound 21, inhibited recombinant human 17beta-HSD1 with an IC50 of 10nM and had no effect on the activity of recombinant human 17beta-hydroxysteroid dehydrogenase type 2 (17beta-HSD2), the enzyme catalyzing estradiol inactivation. These properties were retained in a cell-based enzyme activity assays. In spite of the estrogen backbone compound 21 did not show estrogen receptor mediated effects in vitro or in vivo. In conclusion, estrone C15 derivative compound 21 can be regarded as a promising lead compound for further development as a 17beta-HSD1 inhibitor.


Assuntos
Inibidores Enzimáticos/farmacologia , Estradiol Desidrogenases/antagonistas & inibidores , Estrona/análogos & derivados , Estrona/farmacologia , Animais , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estradiol/química , Estrona/química , Humanos , Modelos Moleculares
2.
Mol Cell Endocrinol ; 248(1-2): 192-8, 2006 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-16413669

RESUMO

The estradiol-synthesizing enzyme 17beta-hydroxysteroid dehydrogenase type 1 (17betaHSD1) is mainly responsible for the conversion of estrone (E1) to the potent estrogen estradiol (E2). It is a key player to control tissue levels of E2 and is therefore an attractive target in estradiol-dependent diseases like breast cancer or endometriosis. We selected a unique non-steroidal pyrimidinone core to start a lead optimization program. We optimized this core by modulation of R1-R6. Its binding mode at the substrate-binding site of 17betaHSD1 is complex and difficult to predict. Nevertheless, some basic structure-activity relationships could be identified. In vitro, the most active pyrimidinone derivative showed effective inhibition of recombinant human 17betaHSD1 at nanomolar concentrations. In intact cells overexpressing the human enzyme, IC50 values in the lower micromolar range were determined. Furthermore, the pyrimidinone proved its use in vivo by significantly reducing 17betaHSD1-dependent tumor growth in a new nude mouse model.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Inibidores Enzimáticos/química , Estradiol Desidrogenases/antagonistas & inibidores , Pirimidinonas/química , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Conformação Proteica , Relação Estrutura-Atividade
3.
PLoS One ; 5(6): e10969, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20544026

RESUMO

Steroid-related cancers can be treated by inhibitors of steroid metabolism. In searching for new inhibitors of human 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD 1) for the treatment of breast cancer or endometriosis, novel substances based on 15-substituted estrone were validated. We checked the specificity for different 17beta-HSD types and species. Compounds were tested for specificity in vitro not only towards recombinant human 17beta-HSD types 1, 2, 4, 5 and 7 but also against 17beta-HSD 1 of several other species including marmoset, pig, mouse, and rat. The latter are used in the processes of pharmacophore screening. We present the quantification of inhibitor preferences between human and animal models. Profound differences in the susceptibility to inhibition of steroid conversion among all 17beta-HSDs analyzed were observed. Especially, the rodent 17beta-HSDs 1 were significantly less sensitive to inhibition compared to the human ortholog, while the most similar inhibition pattern to the human 17beta-HSD 1 was obtained with the marmoset enzyme. Molecular docking experiments predicted estrone as the most potent inhibitor. The best performing compound in enzymatic assays was also highly ranked by docking scoring for the human enzyme. However, species-specific prediction of inhibitor performance by molecular docking was not possible. We show that experiments with good candidate compounds would out-select them in the rodent model during preclinical optimization steps. Potentially active human-relevant drugs, therefore, would no longer be further developed. Activity and efficacy screens in heterologous species systems must be evaluated with caution.


Assuntos
Inibidores Enzimáticos/farmacologia , Estradiol Desidrogenases/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Estradiol Desidrogenases/metabolismo , Humanos , Especificidade da Espécie , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA