RESUMO
Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.
Assuntos
Homeostase , Janus Quinases , Macrófagos , Camundongos Knockout , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Camundongos Endogâmicos C57BL , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , TYK2 Quinase/metabolismo , TYK2 Quinase/genética , Regulação da Expressão GênicaRESUMO
Lung development and function arises from the interactions between diverse cell types and lineages. Using single-cell RNA sequencing (RNA-seq), we characterize the cellular composition of the lung during development and identify vast dynamics in cell composition and their molecular characteristics. Analyzing 818 ligand-receptor interaction pairs within and between cell lineages, we identify broadly interacting cells, including AT2, innate lymphocytes (ILCs), and basophils. Using interleukin (IL)-33 receptor knockout mice and in vitro experiments, we show that basophils establish a lung-specific function imprinted by IL-33 and granulocyte-macrophage colony-stimulating factor (GM-CSF), characterized by unique signaling of cytokines and growth factors important for stromal, epithelial, and myeloid cell fates. Antibody-depletion strategies, diphtheria toxin-mediated selective depletion of basophils, and co-culture studies show that lung resident basophils are important regulators of alveolar macrophage development and function. Together, our study demonstrates how whole-tissue signaling interaction map on the single-cell level can broaden our understanding of cellular networks in health and disease.
Assuntos
Basófilos/metabolismo , Comunicação Celular , Impressão Genômica , Macrófagos Alveolares/metabolismo , Transcriptoma , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-33/metabolismo , Macrófagos Alveolares/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula ÚnicaRESUMO
Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.
Assuntos
Aterosclerose , Complemento C3 , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Inflamação , Macrófagos/metabolismoRESUMO
Allergies are considered to represent mal-directed type 2 immune responses against mostly innocuous exogenous compounds. Immunoglobulin E (IgE) antibodies are a characteristic feature of allergies and mediate hypersensitivity against allergens through activation of effector cells, particularly mast cells (MCs). Although the physiological functions of this dangerous branch of immunity have remained enigmatic, recent evidence shows that allergic immune reactions can help to protect against the toxicity of venoms. Because bacteria are a potent alternative source of toxins, we assessed the possible role of allergy-like type 2 immunity in antibacterial host defense. We discovered that the adaptive immune response against Staphylococcus aureus (SA) skin infection substantially improved systemic host defense against secondary SA infections in mice. Moreover, this acquired protection depended on IgE effector mechanisms and MCs. Importantly, our results reveal a previously unknown physiological function of allergic immune responses, IgE antibodies, and MCs in host defense against a pathogenic bacterium.
Assuntos
Imunidade Adaptativa/imunologia , Imunoglobulina E/imunologia , Mastócitos/imunologia , Infecções Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Alérgenos/imunologia , Animais , Feminino , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Mastócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/imunologia , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologiaRESUMO
Hemolysis drives susceptibility to bacterial infections and predicts poor outcome from sepsis. These detrimental effects are commonly considered to be a consequence of heme-iron serving as a nutrient for bacteria. We employed a Gram-negative sepsis model and found that elevated heme levels impaired the control of bacterial proliferation independently of heme-iron acquisition by pathogens. Heme strongly inhibited phagocytosis and the migration of human and mouse phagocytes by disrupting actin cytoskeletal dynamics via activation of the GTP-binding Rho family protein Cdc42 by the guanine nucleotide exchange factor DOCK8. A chemical screening approach revealed that quinine effectively prevented heme effects on the cytoskeleton, restored phagocytosis and improved survival in sepsis. These mechanistic insights provide potential therapeutic targets for patients with sepsis or hemolytic disorders.
Assuntos
Infecções por Bactérias Gram-Negativas/imunologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Heme/metabolismo , Hemólise/imunologia , Macrófagos/imunologia , Fagocitose , Sepse/imunologia , Animais , Antibacterianos/uso terapêutico , Citoesqueleto/metabolismo , Feminino , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Fatores de Troca do Nucleotídeo Guanina/genética , Heme Oxigenase-1/genética , Hemólise/efeitos dos fármacos , Humanos , Evasão da Resposta Imune , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Quinina/uso terapêutico , Células RAW 264.7 , Sepse/tratamento farmacológico , Proteína cdc42 de Ligação ao GTP/metabolismoRESUMO
Immune responses are tightly regulated to ensure efficient pathogen clearance while avoiding tissue damage. Here we report that Setdb2 was the only protein lysine methyltransferase induced during infection with influenza virus. Setdb2 expression depended on signaling via type I interferons, and Setdb2 repressed expression of the gene encoding the neutrophil attractant CXCL1 and other genes that are targets of the transcription factor NF-κB. This coincided with occupancy by Setdb2 at the Cxcl1 promoter, which in the absence of Setdb2 displayed diminished trimethylation of histone H3 Lys9 (H3K9me3). Mice with a hypomorphic gene-trap construct of Setdb2 exhibited increased infiltration of neutrophils during sterile lung inflammation and were less sensitive to bacterial superinfection after infection with influenza virus. This suggested that a Setdb2-mediated regulatory crosstalk between the type I interferons and NF-κB pathways represents an important mechanism for virus-induced susceptibility to bacterial superinfection.
Assuntos
Histona-Lisina N-Metiltransferase/imunologia , NF-kappa B/imunologia , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Pneumonia/imunologia , Superinfecção/imunologia , Animais , Quimiocina CXCL1/imunologia , Suscetibilidade a Doenças , Feminino , Interferon Tipo I/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Infecções por Orthomyxoviridae/enzimologia , Infecções por Orthomyxoviridae/virologia , Pneumonia/enzimologia , Pneumonia/virologia , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Organismos Livres de Patógenos Específicos , Superinfecção/enzimologia , Superinfecção/microbiologiaRESUMO
Lipocalin 2 (LCN2) is a secreted glycoprotein with roles in multiple biological processes. It contributes to host defense by interference with bacterial iron uptake and exerts immunomodulatory functions in various diseases. Here, we aimed to characterize the function of LCN2 in lung macrophages and dendritic cells (DCs) using Lcn2-/- mice. Transcriptome analysis revealed strong LCN2-related effects in CD103+ DCs during homeostasis, with differential regulation of antigen processing and presentation and antiviral immunity pathways. We next validated the relevance of LCN2 in a mouse model of influenza infection, wherein LCN2 protected from excessive weight loss and improved survival. LCN2-deficiency was associated with enlarged mediastinal lymph nodes and increased lung T cell numbers, indicating a dysregulated immune response to influenza infection. Depletion of CD8+ T cells equalized weight loss between WT and Lcn2-/- mice, proving that LCN2 protects from excessive disease morbidity by dampening CD8+ T cell responses. In vivo T cell chimerism and in vitro T cell proliferation assays indicated that improved antigen processing by CD103+ DCs, rather than T cell intrinsic effects of LCN2, contribute to the exacerbated T cell response. Considering the antibacterial potential of LCN2 and that commensal microbes can modulate antiviral immune responses, we speculated that LCN2 might cause the observed influenza phenotype via the microbiome. Comparing the lung and gut microbiome of WT and Lcn2-/- mice by 16S rRNA gene sequencing, we observed profound effects of LCN2 on gut microbial composition. Interestingly, antibiotic treatment or co-housing of WT and Lcn2-/- mice prior to influenza infection equalized lung CD8+ T cell counts, suggesting that the LCN2-related effects are mediated by the microbiome. In summary, our results highlight a novel regulatory function of LCN2 in the modulation of antiviral immunity.
Assuntos
Influenza Humana/imunologia , Lipocalina-2/metabolismo , Microbiota/imunologia , Transcriptoma , Animais , Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Feminino , Microbioma Gastrointestinal , Homeostase , Humanos , Imunidade , Influenza Humana/virologia , Lipocalina-2/genética , Pulmão/imunologia , Pulmão/virologia , Ativação Linfocitária , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos EspecíficosRESUMO
Tissue-resident macrophages are of vital importance as they preserve tissue homeostasis in all mammalian organs. Nevertheless, appropriate cell culture models are still limited. Here, we propose a novel culture model to study and expand murine primary alveolar macrophages (AMs), the tissue-resident macrophages of the lung, in vitro over several months. By providing a combination of granulocyte-macrophage colony-stimulating factor, TGFß, and the PPARγ activator rosiglitazone, we maintain and expand mouse ex vivo cultured AMs (mexAMs) over several months. MexAMs maintain typical morphologic features and stably express primary AM surface markers throughout in vitro culture. They respond to microbial ligands and exhibit an AM-like transcriptional profile, including the expression of AM-specific transcription factors. Furthermore, when transferred into AM-deficient mice, mexAMs efficiently engraft in the lung and fulfill key macrophage functions, leading to a significantly reduced surfactant load in those mice. Altogether, mexAMs provide a novel, simple, and versatile tool to study AM behavior in homeostasis and disease settings.
Assuntos
Macrófagos Alveolares/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Fígado/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Macrófagos Alveolares/patologia , Camundongos Endogâmicos C57BL , Fenótipo , Proteinose Alveolar Pulmonar/metabolismo , Proteinose Alveolar Pulmonar/patologia , Proteinose Alveolar Pulmonar/fisiopatologia , Transcrição GênicaRESUMO
BACKGROUND & AIMS: Previous single-cell RNA-sequencing analyses have shown that Trem2-expressing macrophages are present in the liver during obesity, non-alcoholic steatohepatitis (NASH) and cirrhosis. Herein, we aimed to functionally characterize the role of bone marrow-derived TREM2-expressing macrophage populations in NASH. METHODS: We used bulk RNA sequencing to assess the hepatic molecular response to lipid-dependent dietary intervention in mice. Spatial mapping, bone marrow transplantation in two complementary murine models and single-cell sequencing were applied to functionally characterize the role of TREM2+ macrophage populations in NASH. RESULTS: We found that the hepatic transcriptomic profile during steatohepatitis mirrors the dynamics of recruited bone marrow-derived monocytes that already acquire increased expression of Trem2 in the circulation. Increased Trem2 expression was reflected by elevated levels of systemic soluble TREM2 in mice and humans with NASH. In addition, soluble TREM2 levels were superior to traditionally used laboratory parameters for distinguishing between different fatty liver disease stages in two separate clinical cohorts. Spatial transcriptomics revealed that TREM2+ macrophages localize to sites of hepatocellular damage, inflammation and fibrosis in the steatotic liver. Finally, using multiple murine models and in vitro experiments, we demonstrate that hematopoietic Trem2 deficiency causes defective lipid handling and extracellular matrix remodeling, resulting in exacerbated steatohepatitis, cell death and fibrosis. CONCLUSIONS: Our study highlights the functional properties of bone marrow-derived TREM2+ macrophages and implies the clinical relevance of systemic soluble TREM2 levels in the context of NASH. LAY SUMMARY: Our study defines the origin and function of macrophages (a type of immune cell) that are present in the liver and express a specific protein called TREM2. We find that these cells have an important role in protecting against non-alcoholic steatohepatitis (a progressive form of fatty liver disease). We also show that the levels of soluble TREM2 in the blood could serve as a circulating marker of non-alcoholic fatty liver disease.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Modelos Animais de Doenças , Humanos , Lipídeos , Fígado/patologia , Cirrose Hepática/complicações , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismoRESUMO
Rheumatoid Arthritis (RA) represents a chronic T cell-mediated inflammatory autoimmune disease. Studies have shown that epigenetic mechanisms contribute to the pathogenesis of RA. Histone deacetylases (HDACs) represent one important group of epigenetic regulators. However, the role of individual HDAC members for the pathogenesis of arthritis is still unknown. In this study we demonstrate that mice with a T cell-specific deletion of HDAC1 (HDAC1-cKO) are resistant to the development of Collagen-induced arthritis (CIA), whereas the antibody response to collagen type II was undisturbed, indicating an unaltered T cell-mediated B cell activation. The inflammatory cytokines IL-17 and IL-6 were significantly decreased in sera of HDAC1-cKO mice. IL-6 treated HDAC1-deficient CD4+ T cells showed an impaired upregulation of CCR6. Selective inhibition of class I HDACs with the HDAC inhibitor MS-275 under Th17-skewing conditions inhibited the upregulation of chemokine receptor 6 (CCR6) in mouse and human CD4+ T cells. Accordingly, analysis of human RNA-sequencing (RNA-seq) data and histological analysis of synovial tissue samples from human RA patients revealed the existence of CD4+CCR6+ cells with enhanced HDAC1 expression. Our data indicate a key role for HDAC1 for the pathogenesis of CIA and suggest that HDAC1 and other class I HDACs might be promising targets of selective HDAC inhibitors (HDACi) for the treatment of RA.
Assuntos
Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Suscetibilidade a Doenças , Histona Desacetilase 1/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Artrite Reumatoide/patologia , Biomarcadores , Colágeno/efeitos adversos , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Histona Desacetilase 1/genética , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
Diet-related health issues such as nonalcoholic fatty liver disease and cardiovascular disorders are known to have a major inflammatory component. However, the exact pathways linking diet-induced changes (e.g., hyperlipidemia) and the ensuing inflammation have remained elusive so far. We identified biological processes related to innate immunity and oxidative stress as prime response pathways in livers of low-density lipoprotein receptor-deficient mice on a Western-type diet using RNA sequencing and in silico functional analyses of transcriptome data. The observed changes were independent of the presence of microbiota and thus indicative of a role for sterile triggers. We further show that malondialdehyde (MDA) epitopes, products of lipid peroxidation and markers for enhanced oxidative stress, are detectable in hepatic inflammation predominantly on dying cells and stimulate cytokine secretion as well as leukocyte recruitment in vitro and in vivo. MDA-induced cytokine secretion in vitro was dependent on the presence of the scavenger receptors CD36 and MSR1. Moreover, in vivo neutralization of endogenously generated MDA epitopes by intravenous injection of a specific MDA antibody results in decreased hepatic inflammation in low-density lipoprotein receptor-deficient mice on a Western-type diet. CONCLUSION: Accumulation of MDA epitopes plays a major role during diet-induced hepatic inflammation and can be ameliorated by administration of an anti-MDA antibody. (Hepatology 2017;65:1181-1195).
Assuntos
Dieta Ocidental , Epitopos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Hipercolesterolemia/patologia , Malondialdeído/metabolismo , Análise de Variância , Animais , Biópsia por Agulha , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Epitopos/imunologia , Fígado Gorduroso/imunologia , Feminino , Hipercolesterolemia/fisiopatologia , Imunidade Inata , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microbiota , Estresse Oxidativo , Distribuição AleatóriaRESUMO
Proper development of the immune system is an intricate process dependent on many factors, including an intact DNA damage response. The DNA double-strand break signaling kinase ATM and its cofactor NBS1 are required during T cell development and for the maintenance of genomic stability. The role of a second ATM cofactor, ATMIN (also known as ASCIZ) in T cells is much less clear, and whether ATMIN and NBS1 function in synergy in T cells is unknown. Here, we investigate the roles of ATMIN and NBS1, either alone or in combination, using murine models. We show loss of NBS1 led to a developmental block at the double-positive stage of T cell development, as well as reduced TCRα recombination, that was unexpectedly neither exacerbated nor alleviated by concomitant loss of ATMIN. In contrast, loss of both ATMIN and NBS1 enhanced DNA damage that drove spontaneous peripheral T cell hyperactivation, proliferation as well as excessive production of proinflammatory cytokines and chemokines, leading to a highly inflammatory environment. Intriguingly, the disease causing T cells were largely proficient for both ATMIN and NBS1. In vivo this resulted in severe intestinal inflammation, colitis and premature death. Our findings reveal a novel model for an intestinal bowel disease phenotype that occurs upon combined loss of the DNA repair cofactors ATMIN and NBS1.
Assuntos
Proteínas de Ciclo Celular/fisiologia , Reparo do DNA , Ativação Linfocitária/fisiologia , Proteínas Nucleares/fisiologia , Linfócitos T/imunologia , Fatores de Transcrição/fisiologia , Animais , Colite/imunologia , Dano ao DNA , Proteínas de Ligação a DNA , Imunofenotipagem , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Recombinação Genética , Baço/citologia , Baço/metabolismoRESUMO
Protecting the integrity of the lung epithelial barrier is essential to ensure respiration and proper oxygenation in patients suffering from various types of lung inflammation. Type I interferon (IFN-I) has been associated with pulmonary epithelial barrier function, however, the mechanisms and involved cell types remain unknown. We aimed to investigate the importance of IFN-I with respect to its epithelial barrier strengthening function to better understand immune-modulating effects in the lung with potential medical implications. Using a mouse model of pneumococcal pneumonia, we revealed that IFN-I selectively protects alveolar epithelial type II cells (AECII) from inflammation-induced cell death. Mechanistically, signaling via the IFN-I receptor on AECII is sufficient to promote AECII survival. The net effects of IFN-I are barrier protection, together with diminished tissue damage, inflammation, and bacterial loads. Importantly, we found that the protective role of IFN-I can also apply to sterile acute lung injury, in which loss of IFN-I signaling leads to a significant reduction in barrier function caused by AECII cell death. Our data suggest that IFN-I is an important mediator in lung inflammation that plays a protective role by antagonizing inflammation-associated cell obstruction, thereby strengthening the integrity of the epithelial barrier.
Assuntos
Células Epiteliais Alveolares/metabolismo , Sobrevivência Celular , Interferon Tipo I/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Pneumonia Pneumocócica/etiologia , Pneumonia Pneumocócica/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Imunomodulação , Lesão Pulmonar/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Knockout , Pneumonia Pneumocócica/patologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Streptococcus pneumoniaeRESUMO
A large subset of mammalian imprinted genes show extra-embryonic lineage (EXEL) specific imprinted expression that is restricted to placental trophectoderm lineages and to visceral yolk sac endoderm (ysE). Isolated ysE provides a homogenous in vivo model of a mid-gestation extra-embryonic tissue to examine the mechanism of EXEL-specific imprinted gene silencing, but an in vitro model of ysE to facilitate more rapid and cost-effective experiments is not available. Reports indicate that ES cells differentiated into cystic embryoid bodies (EBs) contain ysE, so here we investigate if cystic EBs model ysE imprinted expression. The imprinted expression pattern of cystic EBs is shown to resemble fetal liver and not ysE. To investigate the reason for this we characterized the methylome and transcriptome of cystic EBs in comparison to fetal liver and ysE, by whole genome bisulphite sequencing and RNA-seq. Cystic EBs show a fetal liver pattern of global hypermethylation and low expression of repeats, while ysE shows global hypomethylation and high expression of IAPEz retroviral repeats, as reported for placenta. Transcriptome analysis confirmed that cystic EBs are more similar to fetal liver than ysE and express markers of early embryonic endoderm. Genome-wide analysis shows that ysE shares epigenetic and repeat expression features with placenta. Contrary to previous reports, we show that cystic EBs do not contain ysE, but are more similar to the embryonic endoderm of fetal liver. This explains why cystic EBs reproduce the imprinted expression seen in the embryo but not that seen in the ysE.
Assuntos
Metilação de DNA , Corpos Embrioides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Impressão Genômica/genética , Modelos Biológicos , Animais , Sequência de Bases , Diferenciação Celular/fisiologia , Imunoprecipitação da Cromatina , Biologia Computacional , Endoderma/metabolismo , Perfilação da Expressão Gênica , Técnicas Histológicas , Hibridização In Situ , Camundongos , Dados de Sequência Molecular , Análise de Sequência de RNA , Saco Vitelino/citologia , Saco Vitelino/metabolismoRESUMO
Phagocytosis and inflammation within the lungs is crucial for host defense during bacterial pneumonia. Triggering receptor expressed on myeloid cells (TREM)-2 was proposed to negatively regulate TLR-mediated responses and enhance phagocytosis by macrophages, but the role of TREM-2 in respiratory tract infections is unknown. Here, we established the presence of TREM-2 on alveolar macrophages (AM) and explored the function of TREM-2 in the innate immune response to pneumococcal infection in vivo. Unexpectedly, we found Trem-2(-/-) AM to display augmented bacterial phagocytosis in vitro and in vivo compared to WT AM. Mechanistically, we detected that in the absence of TREM-2, pulmonary macrophages selectively produced elevated complement component 1q (C1q) levels. We found that these increased C1q levels depended on peroxisome proliferator-activated receptor-δ (PPAR-δ) activity and were responsible for the enhanced phagocytosis of bacteria. Upon infection with S. pneumoniae, Trem-2(-/-) mice exhibited an augmented bacterial clearance from lungs, decreased bacteremia and improved survival compared to their WT counterparts. This work is the first to disclose a role for TREM-2 in clinically relevant respiratory tract infections and demonstrates a previously unknown link between TREM-2 and opsonin production within the lungs.
Assuntos
Complemento C1q/metabolismo , Modelos Animais de Doenças , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Glicoproteínas de Membrana/metabolismo , Pneumonia Pneumocócica/imunologia , Receptores Imunológicos/metabolismo , Mucosa Respiratória/imunologia , Animais , Apoptose , Linhagem Celular Transformada , Células Cultivadas , Complemento C1q/genética , Citocinas/metabolismo , Feminino , Pulmão/citologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , PPAR gama/metabolismo , Fagocitose , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/patologia , Receptores Imunológicos/genética , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Análise de SobrevidaRESUMO
During inflammation, neutrophils are rapidly mobilized from the bone marrow storage pool into peripheral blood (PB) to enter lesional sites, where most rapidly undergo apoptosis. Monocytes constitute a second wave of inflammatory immigrates, giving rise to long-lived macrophages and dendritic cell subsets. According to descriptive immunophenotypic and cell culture studies, neutrophils may directly "transdifferentiate" into monocytes/macrophages. We provide mechanistic data in human and murine models supporting the existence of this cellular pathway. First, the inflammatory signal-induced MKK6-p38MAPK cascade activates a monocyte differentiation program in human granulocyte colony-stimulating factor-dependent neutrophils. Second, adoptively transferred neutrophils isolated from G-CSF-pretreated mice rapidly acquired monocyte characteristics in response to inflammatory signals in vivo. Consistently, inflammatory signals led to the recruitment of osteoclast progenitor cell potential from ex vivo-isolated G-CSF-mobilized human blood neutrophils. Monocytic cell differentiation potential was retained in left-shifted band-stage neutrophils but lost in neutrophils from steady-state PB. MKK6-p38MAPK signaling in HL60 model cells led to diminishment of the transcription factor C/EBPα, which enabled the induction of a monocytic cell differentiation program. Gene profiling confirmed lineage conversion from band-stage neutrophils to monocytic cells. Therefore, inflammatory signals relayed by the MKK6-p38MAPK cascade induce monocytic cell differentiation from band-stage neutrophils.
Assuntos
Diferenciação Celular/imunologia , Inflamação/imunologia , MAP Quinase Quinase 6/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Animais , Western Blotting , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/imunologia , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/imunologia , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Células HL-60 , Humanos , Inflamação/genética , Inflamação/metabolismo , Interleucina-1beta/farmacologia , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Neutrófilos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/imunologia , Osteoblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/imunologia , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
FOXP3+ regulatory T cells (Treg cells) are key for immune homeostasis. Here, we reveal that nuclear receptor corepressor 1 (NCOR1) controls naïve and effector Treg cell states. Upon NCOR1 deletion in T cells, effector Treg cell frequencies were elevated in mice and in in vitro-generated human Treg cells. NCOR1-deficient Treg cells failed to protect mice from severe weight loss and intestinal inflammation associated with CD4+ T cell transfer colitis, indicating impaired suppressive function. NCOR1 controls the transcriptional integrity of Treg cells, since effector gene signatures were already upregulated in naïve NCOR1-deficient Treg cells while effector NCOR1-deficient Treg cells failed to repress genes associated with naïve Treg cells. Moreover, genes related to cholesterol homeostasis including targets of liver X receptor (LXR) were dysregulated in NCOR1-deficient Treg cells. However, genetic ablation of LXRß in T cells did not revert the effects of NCOR1 deficiency, indicating that NCOR1 controls naïve and effector Treg cell subset composition independent from its ability to repress LXRß-induced gene expression. Thus, our study reveals that NCOR1 maintains naïve and effector Treg cell states via regulating their transcriptional integrity. We also reveal a critical role for this epigenetic regulator in supporting the suppressive functions of Treg cells in vivo.
Assuntos
Diferenciação Celular , Correpressor 1 de Receptor Nuclear , Linfócitos T Reguladores , Linfócitos T Reguladores/imunologia , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 1 de Receptor Nuclear/genética , Animais , Camundongos , Humanos , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Camundongos Endogâmicos C57BL , Colite/imunologia , Colite/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Camundongos KnockoutRESUMO
Postoperative pain affects most patients after major surgery and can transition to chronic pain. The considerable side effects and limited efficacy of current treatments underline the need for new therapeutic options. We observed increased amounts of the metabolites BH4 and serotonin after skin injury. Mast cells were primary postoperative sources of Gch1, the rate-limiting enzyme in BH4 synthesis, itself an obligate cofactor in serotonin production by tryptophan hydroxylase (Tph1). Mice deficient in mast cells or in mast cell-specific Gch1 or Tph1 showed drastically decreased postoperative pain. We found that injury induced the nociceptive neuropeptide substance P, mast cell degranulation, and granule nerve colocalization. Substance P triggered serotonin release in mouse and human mast cells, and substance P receptor blockade substantially ameliorated pain hypersensitivity. Our findings highlight the importance of mast cells at the neuroimmune interface and substance P-driven mast cell BH4 and serotonin production as a therapeutic target for postoperative pain treatment.
Assuntos
Mastócitos , Dor Pós-Operatória , Serotonina , Mastócitos/imunologia , Serotonina/metabolismo , Animais , Dor Pós-Operatória/imunologia , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Substância P/metabolismo , Masculino , Camundongos Knockout , Triptofano Hidroxilase/metabolismoRESUMO
Atherosclerosis is a chronic disease of the vascular wall driven by lipid accumulation and inflammation in the intimal layer of arteries, and its main complications, myocardial infarction and stroke, are the leading cause of mortality worldwide [1], [2]. Recent studies have identified Triggering receptor expressed on myeloid cells 2 (TREM2), a lipid-sensing receptor regulating myeloid cell functions [3], to be highly expressed in macrophage foam cells in experimental and human atherosclerosis [4]. However, the role of TREM2 in atherosclerosis is not fully known. Here, we show that hematopoietic or global TREM2 deficiency increased, whereas TREM2 agonism decreased necrotic core formation in early atherosclerosis. We demonstrate that TREM2 is essential for the efferocytosis capacities of macrophages, and to the survival of lipid-laden macrophages, indicating a crucial role of TREM2 in maintaining the balance between foam cell death and clearance of dead cells in atherosclerotic lesions, thereby controlling plaque necrosis.