Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Intervirology ; 65(1): 1-16, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34438407

RESUMO

INTRODUCTION: The avian influenza (AI) virus causes a highly contagious disease which is common in wild and domestic birds and sporadic in humans. Mutations and genetic reassortments among the 8 negative-sense RNA segments of the viral genome alter its pathogenic potential, demanding well-targeted, active surveillance for infection control. METHODS: Wild duck fecal samples were collected during the 2018 bird health annual surveillance in South Korea for tracking variations of the AI virus. One low-pathogenic avian influenza H5N3 reassortment virus (A/mallard duck/South Korea/KNU18-91/2018 [H5N3]) was isolated and genomically characterized by phylogenetic and molecular analyses in this study. RESULTS: It was devoid of polybasic amino acids at the hemagglutinin (HA) cleavage site and exhibited a stalk region without deletion in the neuraminidase (NA) gene and NA inhibitor resistance-linked E/D627K/N and D701N marker mutations in the PB2 gene, suggesting its low-pathogenic AI. It showed a potential of a reassortment where only HA originated from the H5N3 poultry virus of China and other genes were derived from Mongolia. In phylogenetic analysis, HA was different from that of the isolate of H5N3 in Korea, 2015. In addition, this novel virus showed adaptation in Madin-Darby canine kidney cells, with 8.05 ± 0.14 log10 50% tissue culture infectious dose (TCID50) /mL at 36 h postinfection. However, it could not replicate in mice well, showing positive growth at 3 days postinfection (dpi) (2.1 ± 0.13 log10 TCID50/mL) but not at 6 dpi. CONCLUSIONS: The HA antigenic relationship of A/mallard duck/South Korea/KNU18-91/2018 (H5N3) showed differences toward one of the old low-pathogenic H5N3 viruses in Korea. These results indicated that a novel reassortment low-pathogenic avian influenza H5N3 subtype virus emerged in South Korea in 2018 via novel multiple reassortments with Eurasian viruses, rather than one of old Korean H5N3 strains.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Cães , Patos , Vírus da Influenza A/genética , Camundongos , Filogenia
2.
Intervirology ; 62(3-4): 145-155, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31533104

RESUMO

BACKGROUND: When infected with the chikungunya virus (CHIKV), 3% to 28% of CHIKV-infected individuals remain asymptomatic, necessitating the development of improved high-throughput screening methods to overcome the limitations of molecular diagnostics or enzyme-linked immunosorbent assays (ELISAs). OBJECTIVE: In this study, two novel monoclonal antibodies (mAbs) targeting envelope 1 (E1) of CHIKV were developed and applied in a fluorescence-linked immunosorbent assay (FLISA) using coumarin-derived dendrimer as the fluorophore. METHODS: The performance of the FLISA was compared with that of ELISA. RESULTS: Using the two novel mAbs (2B5 and 2C8), FLISA could detect 1 × 105 PFU/mL of CHIKV, exhibiting a 2-fold lower limit of detection (LOD) compared to ELISA. The LOD of FICT corresponded to a comparative threshold value of 23.95 and 4 × 106 of RNA copy number/µL. In the presence of human sera and blood, virus detection by FLISA was 3-fold better than ELISA, with an LOD of 2 × 105 PFU/mL. Sera and blood interfered with the ELISA, resulting in 6 × 105 PFU/mL as the LOD. CONCLUSIONS: FLISA using two novel mAbs and coumarin-derived dendrimer is a superior diagnostic assay for detecting CHIKV in human sera and blood, compared to conventional ELISA.


Assuntos
Antígenos Virais/análise , Febre de Chikungunya/diagnóstico , Vírus Chikungunya/isolamento & purificação , Testes Diagnósticos de Rotina/métodos , Fluorometria/métodos , Técnicas Imunoenzimáticas/métodos , Proteínas do Envelope Viral/análise , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Vírus Chikungunya/imunologia , Humanos , Sensibilidade e Especificidade
3.
Viruses ; 13(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34834997

RESUMO

The outbreaks of H5N2 avian influenza viruses have occasionally caused the death of thousands of birds in poultry farms. Surveillance during the 2018 winter season in South Korea revealed three H5N2 isolates in feces samples collected from wild birds (KNU18-28: A/Wild duck/South Korea/KNU18-28/2018, KNU18-86: A/Bean Goose/South Korea/KNU18-86/2018, and KNU18-93: A/Wild duck/South Korea/KNU18-93/2018). Phylogenetic tree analysis revealed that these viruses arose from reassortment events among various virus subtypes circulating in South Korea and other countries in the East Asia-Australasian Flyway. The NS gene of the KNU18-28 and KNU18-86 isolates was closely related to that of China's H10N3 strain, whereas the KNU18-93 strain originated from the H12N2 strain in Japan, showing two different reassortment events and different from a low pathogenic H5N3 (KNU18-91) virus which was isolated at the same day and same place with KNU18-86 and KNU18-93. These H5N2 isolates were characterized as low pathogenic avian influenza viruses. However, many amino acid changes in eight gene segments were identified to enhance polymerase activity and increase adaptation and virulence in mice and mammals. Experiments reveal that viral replication in MDCK cells was quite high after 12 hpi, showing the ability to replicate in mouse lungs. The hematoxylin and eosin-stained (H&E) lung sections indicated different degrees of pathogenicity of the three H5N2 isolates in mice compared with that of the control H1N1 strain. The continuing circulation of these H5N2 viruses may represent a potential threat to mammals and humans. Our findings highlight the need for intensive surveillance of avian influenza virus circulation in South Korea to prevent the risks posed by these reassortment viruses to animal and public health.


Assuntos
Vírus da Influenza A Subtipo H5N2/classificação , Vírus da Influenza A Subtipo H5N2/genética , Vírus Reordenados/classificação , Vírus Reordenados/genética , Animais , Animais Selvagens/virologia , Aves/virologia , Modelos Animais de Doenças , Cães , Patos/virologia , Fezes/virologia , Gansos/virologia , Vírus da Influenza A Subtipo H5N2/isolamento & purificação , Vírus da Influenza A Subtipo H5N2/patogenicidade , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Japão , Células Madin Darby de Rim Canino , Mamíferos , Camundongos , Epidemiologia Molecular , Filogenia , Aves Domésticas/virologia , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/patogenicidade , República da Coreia/epidemiologia , Virulência , Replicação Viral
4.
Viruses ; 13(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067187

RESUMO

Low-pathogenicity avian influenza viruses (LPAIV) introduced by migratory birds circulate in wild birds and can be transmitted to poultry. These viruses can mutate to become highly pathogenic avian influenza viruses causing severe disease and death in poultry. In March 2019, an H7N3 avian influenza virus-A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3)-was isolated from spot-billed ducks in South Korea. This study aimed to evaluate the phylogenetic and mutational analysis of this isolate. Molecular analysis revealed that the genes for HA (hemagglutinin) and NA (neuraminidase) of this strain belonged to the Central Asian lineage, whereas genes for other internal proteins such as polymerase basic protein 1 (PB1), PB2, nucleoprotein, polymerase acidic protein, matrix protein, and non-structural protein belonged to that of the Korean lineage. In addition, a monobasic amino acid (PQIEPR/GLF) at the HA cleavage site, and the non-deletion of the stalk region in the NA gene indicated that this isolate was a typical LPAIV. Nucleotide sequence similarity analysis of HA revealed that the highest homology (99.51%) of this isolate is to that of A/common teal/Shanghai/CM1216/2017 (H7N7), and amino acid sequence of NA (99.48%) was closely related to that of A/teal/Egypt/MB-D-487OP/2016 (H7N3). An in vitro propagation of the A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3) virus showed highest (7.38 Log10 TCID50/mL) virus titer at 60 h post-infection, and in experimental mouse lungs, the virus was detected at six days' post-infection. Our study characterizes genetic mutations, as well as pathogenesis in both in vitro and in vivo model of a new Korea H7N3 viruses in 2019, carrying multiple potential mutations to become highly pathogenic and develop an ability to infect humans; thus, emphasizing the need for routine surveillance of avian influenza viruses in wild birds.


Assuntos
Patos/virologia , Vírus da Influenza A Subtipo H7N3/classificação , Vírus da Influenza A Subtipo H7N3/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , Animais Selvagens/virologia , Células Cultivadas , Feminino , Genes Virais , Genoma Viral , Genômica/métodos , História do Século XXI , Especificidade de Hospedeiro , Vírus da Influenza A Subtipo H7N3/isolamento & purificação , Influenza Aviária/história , Camundongos , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Vigilância em Saúde Pública , Vírus Reordenados , República da Coreia/epidemiologia , Replicação Viral
5.
Viruses ; 13(1)2020 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375376

RESUMO

Influenza A virus subtype H1N1 has caused global pandemics like the "Spanish flu" in 1918 and the 2009 H1N1 pandemic several times. H1N1 remains in circulation and survives in multiple animal sources, including wild birds. Surveillance during the winter of 2018-2019 in Korea revealed two H1N1 isolates in samples collected from wild bird feces: KNU18-64 (A/Greater white-fronted goose/South Korea/KNU18-64/2018(H1N1) and WKU19-4 (A/wild bird/South Korea/WKU19-4/2019(H1N1). Phylogenetic analysis indicated that M gene of KNU18-64(H1N1) isolate resembles that of the Alaskan avian influenza virus, whereas WKU19-4(H1N1) appears to be closer to the Mongolian virus. Molecular characterization revealed that they harbor the amino acid sequence PSIQRSGLF and are low-pathogenicity influenza viruses. In particular, the two isolates harbored three different mutation sites, indicating that they have different virulence characteristics. The mutations in the PB1-F2 and PA protein of WKU19-4(H1N1) indicate increasing polymerase activity. These results corroborate the kinetic growth data for WKU19-4 in MDCK cells: a dramatic increase in the viral titer after 12 h post-inoculation compared with that in the control group H1N1 (CA/04/09(pdm09)). The KNU18-64(H1N1) isolate carries mutations indicating an increase in mammal adaptation; this characterization was confirmed by the animal study in mice. The KNU18-64(H1N1) group showed the presence of viruses in the lungs at days 3 and 6 post-infection, with titers of 2.71 ± 0.16 and 3.71 ± 0.25 log10(TCID50/mL), respectively, whereas the virus was only detected in the WKU19-4(H1N1) group at day 6 post-infection, with a lower titer of 2.75 ± 0.51 log10(TCID50/mL). The present study supports the theory that there is a relationship between Korea and America with regard to reassortment to produce novel viral strains. Therefore, there is a need for increased surveillance of influenza virus circulation in free-flying and wild land-based birds in Korea, particularly with regard to Alaskan and Asian strains.


Assuntos
Animais Selvagens , Patos/virologia , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Vírus Reordenados , Animais , Cães , Feminino , Genoma Viral , Genômica/métodos , História do Século XXI , Especificidade de Hospedeiro , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Aviária/história , Influenza Aviária/patologia , Células Madin Darby de Rim Canino , Camundongos , Filogenia , Vigilância em Saúde Pública , República da Coreia/epidemiologia
6.
J Biomed Nanotechnol ; 15(6): 1185-1200, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31072427

RESUMO

Despite significant progress in the development of diagnostic methods for influenza, avian influenza (AI) infection continues to represent a substantial threat to human health. Among the subtypes of AI, H5 influenza is highly infectious to animals and humans; however, there are no reliable H5 subtype-specific diagnostic systems owing to a scarcity of H5 subtype-specific detection elements. In this study, a new peptide aptamer (P1:KASGYTFTSF) was developed to recognize the H5 viral subtype using an in silico bioinformatics approach for predicting complementarity-determining regions (CDRs), and the aptamer was evaluated by immunoassays. The three-dimensional structure of influenza hemagglutinin (HA) and the peptide were used in a molecular docking study, and the peptide was compared to the epitope-derived peptide aptamer (H5-P2:KPNGAINF). Interactions between the peptides and the virus were then assessed by fluorescence-linked sandwich immunosorbent assay (FLISA), immunofluorescence staining assay (IFA), and rapid fluorescent immunochromatographic assay (FICT). P1 and H5-P2 both significantly detected H5N3 at 15.6 HAU/mL (P < 0.05), and P1 detected the virus more effectively (P < 0.05), consistent with the docking result. An optical image of the peptide recognizing an H5N3-infected cell was acquired by IFA, and was consistent with the antibody-linked IFA result. FICT employing the peptide showed the ability for H5 subtype-specific diagnosis, with 2-fold higher performance than that of a conventional, antibody-linked rapid test. This work shows the potential of a CDR-predicted peptide aptamer as a probe for immunological assays that can specifically recognize AI virus.


Assuntos
Vírus da Influenza A , Aptâmeros de Peptídeos , Regiões Determinantes de Complementaridade , Simulação de Acoplamento Molecular , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA