Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 38(4): 1514-1521, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044193

RESUMO

Establishing relationships between the surface atomic structure and activity of Cu-based electrocatalysts for CO2 and CO reduction is hindered by probable surface restructuring under working conditions. Insights into these structural evolutions are scarce as techniques for monitoring the surface facets in conventional experimental designs are lacking. To directly correlate surface reconstructions to changes in selectivity or activity, the development of surface-sensitive, electrochemical probes is highly desirable. Here, we report the underpotential deposition of lead over three low index Cu single crystals in alkaline media, the preferred electrolyte for CO reduction studies. We find that underpotential deposition of Pb onto these facets occurs at distinct potentials, and we use these benchmarks to probe the predominant facet of polycrystalline Cu electrodes in situ. Finally, we demonstrate that Cu and Pb form an irreversible surface alloy during underpotential deposition, which limits this method to investigating the surface atomic structure after reaction.

2.
Anal Chem ; 93(18): 7022-7028, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33905662

RESUMO

Electrochemistry-mass spectrometry is a versatile and reliable tool to study the interfacial reaction rates of Faradaic processes with high temporal resolutions. However, the measured mass spectrometric signals typically do not directly correspond to the partial current density toward the analyte due to mass transport effects. Here, we introduce a mathematical framework, grounded on a mass transport model, to obtain a quantitative and truly dynamic partial current density from a measured mass spectrometer signal by means of deconvolution. Furthermore, it is shown that the time resolution of electrochemistry-mass spectrometry is limited by entropy-driven processes during mass transport to the mass spectrometer. The methodology is validated by comparing the measured impulse responses of hydrogen and oxygen evolution to the model predictions and subsequently applied to uncover dynamic phenomena during hydrogen and oxygen evolution in an acidic electrolyte.


Assuntos
Eletrólitos , Eletroquímica , Entropia , Espectrometria de Massas
3.
J Phys Chem C Nanomater Interfaces ; 128(1): 428-435, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229589

RESUMO

Many alloy electrocatalysts, including intermetallics, are exceptionally sensitive to segregation in air due to the electronic dissimilarity of the constituent metals. We demonstrate that even alloys with strong cohesive energies rapidly segregate upon air exposure, completely burying the less reactive constituent metal beneath the surface. To circumvent this issue, we develop and validate a new experimental approach for bridging the pressure gap between electronic structure characterization performed under ultrahigh vacuum and electrocatalytic activity testing performed under ambient conditions. This method is based on encapsulation of the alloy surface with a sacrificial passivating overlayer of aluminum oxide. These passivating overlayers protect the underlying material from segregation in the air and can be completely and rapidly removed in an alkaline electrochemical environment under potential control. We demonstrate that alloy surfaces prepared, protected, and introduced into the electrolyte in this manner exhibit near-surface compositions consistent with those of the bulk material despite prior air exposure. We also demonstrate that this protection scheme does not alter the electrocatalytic activity of benchmark electrocatalysts. Implementation of this approach will enable reliable correlations between the electrocatalytic activity measured under ambient conditions and the near-surface electronic structure measured under ultrahigh vacuum.

4.
ACS Energy Lett ; 8(3): 1607-1612, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36937791

RESUMO

Working with non-noble electrocatalysts poses significant experimental challenges to unambiguously evaluate their intrinsic activity and characterize their working state and possible structural and compositional changes before, during, and after activity testing. Despite the vast number of studies on non-noble catalysts, these issues are still not addressed sufficiently-hindering significant progress in the field. In this Perspective, we present pitfalls and challenges when working with non-noble-metal-based electrocatalysts from catalyst synthesis, over electrochemical testing, to post-reaction characterization, and suggest potential solutions to overcome these difficulties. We believe that reliable measurements of the intrinsic activity of non-noble-metal-based electrocatalysts will greatly enhance our understanding of electrocatalysis in general and is a prerequisite for developing more active and selective electrocatalysts.

5.
Rev Sci Instrum ; 94(3): 033909, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012796

RESUMO

Despite numerous advancements in synthesizing photoactive materials, the evaluation of their catalytic performance remains challenging since their fabrication often involves tedious strategies, yielding only low quantities in the µ-gram scale. In addition, these model catalysts exhibit different forms, such as powders or film(-like) structures grown on various supporting materials. Herein, we present a versatile gas phase µ-photoreactor, compatible with different catalyst morphologies, which is, in contrast to existing systems, re-openable and -useable, allowing not only post-characterization of the photocatalytic material but also enabling catalyst screening studies in short experimental time intervals. Sensitive and time-resolved reaction monitoring at ambient pressure is realized by a lid-integrated capillary, transmitting the entire gas flow from the reactor chamber to a quadrupole mass spectrometer. Due to the microfabrication of the lid from borosilicate as base material, 88% of the geometrical area can be illuminated by a light source, further enhancing sensitivity. Gas dependent flow rates through the capillary were experimentally determined to be 1015-1016 molecules s-1, and in combination with a reactor volume of 10.5 µl, this results in residence times below 40 s. Furthermore, the reactor volume can easily be altered by adjusting the height of the polymeric sealing material. The successful operation of the reactor is demonstrated by selective ethanol oxidation over Pt-loaded TiO2 (P25), which serves to exemplify product analysis from dark-illumination difference spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA