Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8009): 758-764, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538800

RESUMO

Van der Waals encapsulation of two-dimensional materials in hexagonal boron nitride (hBN) stacks is a promising way to create ultrahigh-performance electronic devices1-4. However, contemporary approaches for achieving van der Waals encapsulation, which involve artificial layer stacking using mechanical transfer techniques, are difficult to control, prone to contamination and unscalable. Here we report the transfer-free direct growth of high-quality graphene nanoribbons (GNRs) in hBN stacks. The as-grown embedded GNRs exhibit highly desirable features being ultralong (up to 0.25 mm), ultranarrow (<5 nm) and homochiral with zigzag edges. Our atomistic simulations show that the mechanism underlying the embedded growth involves ultralow GNR friction when sliding between AA'-stacked hBN layers. Using the grown structures, we demonstrate the transfer-free fabrication of embedded GNR field-effect devices that exhibit excellent performance at room temperature with mobilities of up to 4,600 cm2 V-1 s-1 and on-off ratios of up to 106. This paves the way for the bottom-up fabrication of high-performance electronic devices based on embedded layered materials.

2.
Nature ; 612(7940): 465-469, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36352233

RESUMO

Ferroelectricity in atomically thin bilayer structures has been recently predicted1 and measured2-4 in two-dimensional materials with hexagonal non-centrosymmetric unit-cells. The crystal symmetry translates lateral shifts between parallel two-dimensional layers to sign changes in their out-of-plane electric polarization, a mechanism termed 'slide-tronics'4. These observations have been restricted to switching between only two polarization states under low charge carrier densities5-12, limiting the practical application of the revealed phenomena13. To overcome these issues, one should explore the nature of polarization in multi-layered van der Waals stacks, how it is governed by intra- and interlayer charge redistribution and to what extent it survives the addition of mobile charge carriers14. To explore these questions, we conduct surface potential measurements of parallel WSe2 and MoS2 multi-layers with aligned and anti-aligned configurations of the polar interfaces. We find evenly spaced, nearly decoupled potential steps, indicating highly confined interfacial electric fields that provide a means to design multi-state 'ladder-ferroelectrics'. Furthermore, we find that the internal polarization remains notable on electrostatic doping of mobile charge carrier densities as high as 1013 cm-2, with substantial in-plane conductivity. Using density functional theory calculations, we trace the extra charge redistribution in real and momentum spaces and identify an eventual doping-induced depolarization mechanism.

3.
Nature ; 563(7732): 485-492, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464268

RESUMO

Structural superlubricity, a state of ultralow friction and wear between crystalline surfaces, is a fundamental phenomenon in modern tribology that defines a new approach to lubrication. Early measurements involved nanometre-scale contacts between layered materials, but recent experimental advances have extended its applicability to the micrometre scale. This is an important step towards practical utilization of structural superlubricity in future technological applications, such as durable nano- and micro-electromechanical devices, hard drives, mobile frictionless connectors, and mechanical bearings operating under extreme conditions. Here we provide an overview of the field, including its birth and main achievements, the current state of the art and the challenges to fulfilling its potential.

4.
J Phys Chem A ; 127(46): 9820-9830, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37938019

RESUMO

An anisotropic interlayer force field that describes the interlayer interactions in homogeneous and heterogeneous interfaces of group-VI transition metal dichalcogenides (MX2, where M = Mo, W, and X = S, Se) is presented. The force field is benchmarked against density functional theory calculations for bilayer systems within the Heyd-Scuseria-Ernzerhof hybrid density functional approximation, augmented by a nonlocal many-body dispersion treatment of long-range correlation. The parametrization yields good agreement with the reference calculations of binding energy curves and sliding potential energy surfaces. It is found to be transferable to transition metal dichalcogenide (TMD) junctions outside of the training set that contain the same atom types. Calculated bulk moduli agree with most previous dispersion-corrected density functional theory predictions, which underestimate the available experimental values. Calculated phonon spectra of the various junctions under consideration demonstrate the importance of appropriately treating the anisotropic nature of the layered interfaces. Considering our previous parametrization for MoS2, the anisotropic interlayer potential enables accurate and efficient large-scale simulations of the dynamical, tribological, and thermal transport properties of a large set of homogeneous and heterogeneous TMD interfaces.

5.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37347128

RESUMO

We demonstrate that angular momentum selectivity of particles traversing chiral environments is not limited to the quantum regime and can be realized in classical scenarios also. In our classical variant, the electron spin, which is central to the quantum chirality induced spin selectivity (CISS) effect, is replaced by the self-rotation of a finite-volume body. The latter is coupled to the center of mass orbital motion of the body through a helical tube via wall friction that acts as a dissipative spin-orbit coupling term. As a specific example, we study C60 molecules that are initially spinning in opposite senses and investigate the effect of various external control parameters on their spatial separation when driven through a rigid helical channel. We highlight resemblances and inherent differences between the quantum CISS effect and its classical variant and discuss the potential of the latter to formulate a new paradigm for enantio-separation.


Assuntos
Elétrons , Fricção , Rotação
6.
Nano Lett ; 22(23): 9529-9536, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36449068

RESUMO

Friction force microscopy experiments on moiré superstructures of graphene-coated platinum surfaces demonstrate that in addition to atomic stick-slip dynamics, a new dominant energy dissipation route emerges. The underlying mechanism, revealed by atomistic molecular dynamics simulations, is related to moiré ridge elastic deformations and subsequent relaxation due to the action of the pushing tip. The measured frictional velocity dependence displays two distinct regimes: (i) at low velocities, the friction force is small and nearly constant; and (ii) above some threshold, friction increases logarithmically with velocity. The threshold velocity, separating the two frictional regimes, decreases with increasing normal load and moiré superstructure period. Based on the measurements and simulation results, a phenomenological model is derived, allowing us to calculate friction under a wide range of room temperature experimental conditions (sliding velocities of 1-104 nm/s and a broad range of normal loads) and providing excellent agreement with experimental observations.

7.
Phys Rev Lett ; 129(27): 276101, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638291

RESUMO

A new frictional mechanism, based on collective stick-slip motion of moiré superstructures across polycrystalline two-dimensional material interfaces, is predicted. The dissipative stick-slip behavior originates from an energetic bistability between low- and high-commensurability configurations of large-scale moiré superstructures. When the grain boundary separates between grains of small and large interfacial twist angle, the corresponding moiré periods are significantly different, resulting in forbidden grain boundary crossing of the moiré superstructures during shear induced motion. For small twist angle grains, where the moiré periods are much larger than the lattice constant, this results in multiple reflections of collective surface waves between the surrounding grain boundaries. In combination with the individual grain boundary dislocation snap-through buckling mechanism dominating at the low normal load regime, the friction exhibits nonmonotonic behavior with the normal load. While the discovered phenomenon is demonstrated for h-BN/graphene polycrystalline junctions, it is expected to be of general nature and occur in many other large-scale layered material interfaces.

8.
Phys Rev Lett ; 126(21): 216101, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114852

RESUMO

The superlattice of alternating graphene/h-BN few-layered heterostructures is found to exhibit strong dependence on the parity of the number of layers within the stack. Odd-parity systems show a unique flamingolike pattern, whereas their even-parity counterparts exhibit regular hexagonal or rectangular superlattices. When the alternating stack consists of 7 layers or more, the flamingo pattern becomes favorable, regardless of parity. Notably, the out-of-plane corrugation of the system strongly depends on the shape of the superstructure resulting in significant parity dependence of its mechanical properties. The predicted phenomenon originates in an intricate competition between moiré patterns developing at the interface of consecutive layers. This mechanism is of general nature and is expected to occur in other alternating stacks of closely matched rigid layered materials as demonstrated for homogeneous alternating junctions of twisted graphene and h-BN. Our findings thus allow for the rational design of mechanomutable metamaterials based on van der Waals heterostructures.

9.
J Org Chem ; 86(5): 3882-3889, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33615796

RESUMO

The present study of the chemistry of short-lived α-fluorocarbocations reveals that even inactive methyl carbons can serve as nucleophiles, attacking a cationic center. This, in turn, facilitates the synthesis of a cyclopropane ring in certain triterpene backbones. We report the synthesis of compounds similar to 2, containing a bridgehead cyclopropane, and compounds of type 3 with an 11 membered bicyclic ring consisting of two bridgehead double bonds (anti-Bredt) within a triterpene skeleton. The synthesis involves three unconventional chemical processes: (a) a methyl group serving as a nucleophile; (b) the unexpected and unprecedented synthesis of a strained system in the absence of an external neighboring trigger; and (c) the formation of an 11-membered bicyclic diene ring within a triterpenoid skeleton. An α-fluorocarbocation mechanism is proposed and supported by density functional theory calculations.

10.
Nano Lett ; 20(10): 7513-7518, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32898421

RESUMO

Thermal conductivity of homogeneous twisted stacks of graphite is found to strongly depend on the misfit angle. The underlying mechanism relies on the angle dependence of phonon-phonon couplings across the twisted interface. Excellent agreement between the calculated thermal conductivity of narrow graphitic stacks and corresponding experimental results indicates the validity of the predictions. This is attributed to the accuracy of interlayer interaction descriptions obtained by the dedicated registry-dependent interlayer potential used. Similar results for h-BN stacks indicate overall higher conductivity and reduced misfit angle variation. This opens the way for the design of tunable heterogeneous junctions with controllable heat-transport properties ranging from substrate-isolation to efficient heat evacuation.

11.
Nat Mater ; 17(10): 894-899, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30061730

RESUMO

Structural superlubricity is a fascinating tribological phenomenon, in which the lateral interactions between two incommensurate contacting surfaces are effectively cancelled resulting in ultralow sliding friction. Here we report the experimental realization of robust superlubricity in microscale monocrystalline heterojunctions, which constitutes an important step towards the macroscopic scale-up of superlubricity. The results for interfaces between graphite and hexagonal boron nitride clearly demonstrate that structural superlubricity persists even when the aligned contact sustains external loads under ambient conditions. The observed frictional anisotropy in the heterojunctions is found to be orders of magnitude smaller than that measured for their homogeneous counterparts. Atomistic simulations reveal that the underlying frictional mechanisms in the two cases originate from completely different dynamical regimes. Our results are expected to be of a general nature and should be applicable to other van der Waals heterostructures.

12.
Phys Rev Lett ; 122(7): 076102, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848642

RESUMO

Negative friction coefficients, where friction is reduced upon increasing normal load, are predicted for superlubric graphite-hexagonal boron nitride heterojunctions. The origin of this counterintuitive behavior lies in the load-induced suppression of the moiré superstructure out-of-plane distortions leading to a less dissipative interfacial dynamics. Thermally induced enhancement of the out-of-plane fluctuations leads to an unusual increase of friction with temperature. The highlighted frictional mechanism is of a general nature and is expected to appear in many layered material heterojunctions.

13.
Nano Lett ; 18(9): 6009-6016, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30109806

RESUMO

We demonstrate snake-like motion of graphene nanoribbons atop graphene and hexagonal boron nitride ( h-BN) substrates using fully atomistic nonequilibrium molecular dynamics simulations. The sliding dynamics of the edge-pulled nanoribbons is found to be determined by the interplay between in-plane ribbon elasticity and interfacial lattice mismatch. This results in an unusual dependence of the friction-force on the ribbon's length, exhibiting an initial linear rise that levels-off above a junction-dependent threshold value dictated by the pre-slip stress distribution within the slider. As part of this letter, we present the LAMMPS implementation of the registry-dependent interlayer potentials for graphene, h-BN, and their heterojunctions that were used herein, which provides enhanced performance and accuracy.

14.
Nat Mater ; 21(1): 12-14, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34949867
15.
Nano Lett ; 17(9): 5321-5328, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28795813

RESUMO

We identify a new material phenomenon, where minute mechanical manipulations induce pronounced global structural reconfigurations in faceted multiwalled nanotubes. This behavior has strong implications on the tribological properties of these systems and may be the key to understand the enhanced interwall friction recently measured for boron-nitride nanotubes with respect to their carbon counterparts. Notably, the fast rotation of helical facets in these systems upon coaxial sliding may serve as a nanoscale Archimedean screw for directional transport of physisorbed molecules.

16.
Beilstein J Org Chem ; 14: 381-388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507643

RESUMO

We present a computational analysis of the terahertz spectra of the monoclinic and the orthorhombic polymorphs of 2,4,6-trinitrotoluene. Very good agreement with experimental data is found when using density functional theory that includes Tkatchenko-Scheffler pair-wise dispersion interactions. Furthermore, we show that for these polymorphs the theoretical results are only weakly affected by many-body dispersion contributions. The absence of dispersion interactions, however, causes sizable shifts in vibrational frequencies and directly affects the spatial character of the vibrational modes. Mode assignment allows for a distinction between the contributions of the monoclinic and orthorhombic polymorphs and shows that modes in the range from 0 to ca. 3.3 THz comprise both inter- and intramolecular vibrations, with the former dominating below ca. 1.5 THz. We also find that intramolecular contributions primarily involve the nitro and methyl groups. Finally, we present a prediction for the terahertz spectrum of 1,3,5-trinitrobenzene, showing that a modest chemical change leads to a markedly different terahertz spectrum.

17.
J Phys Chem A ; 120(19): 3278-85, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-26807992

RESUMO

The Driven Liouville von Neumann approach [J. Chem. Theory Comput. 2014, 10, 2927-2941] is a computationally efficient simulation method for modeling electron dynamics in molecular electronics junctions. Previous numerical simulations have shown that the method can reproduce the exact single-particle dynamics while avoiding density matrix positivity violation found in previous implementations. In this study we prove that in the limit of infinite lead models the underlying equation of motion can be cast in Lindblad form. This provides a formal justification for the numerically observed density matrix positivity conservation.

18.
J Am Chem Soc ; 136(3): 963-9, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24368025

RESUMO

The diphenylalanine peptide self-assembles to form nanotubular structures of remarkable mechanical, piezolelectrical, electrical, and optical properties. The tubes are unexpectedly stiff, with reported Young's moduli of 19-27 GPa that were extracted using two independent techniques. Yet the physical basis for the remarkable rigidity is not fully understood. Here, we calculate the Young's modulus for bulk diphenylalanine peptide from first principles, using density functional theory with dispersive corrections. The calculation demonstrates that at least half of the stiffness of the material is the result of dispersive interactions. We further quantify the nature of various inter- and intramolecular interactions. We reveal that despite the porous nature of the lattice, there is an array of rigid nanotube backbones with interpenetrating "zipper-like" aromatic interlocks that result in stiffness and robustness. This presents a general strategy for the analysis of bioinspired functional materials and may pave the way for rational design of bionanomaterials.


Assuntos
Elasticidade , Nanoestruturas/química , Peptídeos/química , Fenilalanina/análogos & derivados , Dipeptídeos , Modelos Moleculares , Fenilalanina/química , Conformação Proteica
19.
J Chem Phys ; 140(10): 104106, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24628151

RESUMO

A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

20.
J Phys Chem Lett ; 15(1): 9-14, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38127265

RESUMO

One-dimensional slidetronics is predicted for double-walled boron-nitride nanotubes. Local electrostatic polarization patterns along the body of the nanotube are found to be determined by the nature of the two nanotube walls, their relative configuration, and circumferential faceting modulation during coaxial interwall sliding. By careful choice of chiral indices, chiral polarization patterns can emerge that spiral around the nanotube circumference. The potential usage of the discovered slidetronic effect for low-dimensional nanogenerators is briefly discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA