Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(7): 3567-3590, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32086516

RESUMO

To sustain iron homeostasis, microorganisms have evolved fine-tuned mechanisms for uptake, storage and detoxification of the essential metal iron. In the human pathogen Aspergillus fumigatus, the fungal-specific bZIP-type transcription factor HapX coordinates adaption to both iron starvation and iron excess and is thereby crucial for virulence. Previous studies indicated that a HapX homodimer interacts with the CCAAT-binding complex (CBC) to cooperatively bind bipartite DNA motifs; however, the mode of HapX-DNA recognition had not been resolved. Here, combination of in vivo (genetics and ChIP-seq), in vitro (surface plasmon resonance) and phylogenetic analyses identified an astonishing plasticity of CBC:HapX:DNA interaction. DNA motifs recognized by the CBC:HapX protein complex comprise a bipartite DNA binding site 5'-CSAATN12RWT-3' and an additional 5'-TKAN-3' motif positioned 11-23 bp downstream of the CCAAT motif, i.e. occasionally overlapping the 3'-end of the bipartite binding site. Phylogenetic comparison taking advantage of 20 resolved Aspergillus species genomes revealed that DNA recognition by the CBC:HapX complex shows promoter-specific cross-species conservation rather than regulon-specific conservation. Moreover, we show that CBC:HapX interaction is absolutely required for all known functions of HapX. The plasticity of the CBC:HapX:DNA interaction permits fine tuning of CBC:HapX binding specificities that could support adaptation of pathogens to their host niches.


Assuntos
Aspergillus fumigatus/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fator de Ligação a CCAAT/metabolismo , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Regiões Promotoras Genéticas , Sequência Rica em At , Aspergillus fumigatus/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/química , Sítios de Ligação , DNA Fúngico/química , DNA Fúngico/metabolismo , Evolução Molecular , Proteínas Fúngicas/química , Mutação , Motivos de Nucleotídeos , Ligação Proteica , Domínios Proteicos , Regulon , Sideróforos/metabolismo , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
2.
Angew Chem Int Ed Engl ; 61(34): e202206851, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35726672

RESUMO

Naturally occurring α-pyrones with biological activities are mostly synthesised by polyketide synthases (PKSs) via iterative decarboxylative Claisen condensation steps. Remarkably, we found that some enzymes related to the fatty acid ß-oxidation pathway in Escherichia coli, namely the CoA ligase FadD and the thiolases FadA and FadI, can synthesise styrylpyrones with phenylpropionic acids in vivo. The two thiolases directly utilise acetyl-CoA as an extender unit for carbon-chain elongation through a non-decarboxylative Claisen condensation, thus making the overall reaction more efficient in terms of carbon and energy consumption. Moreover, using a cell-free approach, different styrylpyrones were synthesised in vitro. Finally, targeted feeding experiments led to the detection of styrylpyrones in other species, demonstrating that the intrinsic ability of the ß-oxidation pathway allows for the synthesis of such molecules in bacteria, revealing an important biological feature hitherto neglected.


Assuntos
Escherichia coli , Policetídeo Sintases , Acetilcoenzima A/metabolismo , Carbono/metabolismo , Escherichia coli/metabolismo , Oxirredução , Policetídeo Sintases/metabolismo
3.
Angew Chem Int Ed Engl ; 60(44): 23763-23770, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34468074

RESUMO

Drimane-type sesquiterpenes exhibit various biological activities and are widely present in eukaryotes. Here, we completely elucidated the biosynthetic pathway of the drimane-type sesquiterpene esters isolated from Aspergillus calidoustus and we discovered that it involves a drimenol cyclase having the same catalytic function previously only reported in plants. Moreover, since many fungal drimenol derivatives possess a γ-butyrolactone ring, we clarified the functions of the cluster-associated cytochrome P450 and FAD-binding oxidoreductase discovering that these two enzymes are solely responsible for the formation of those structures. Furthermore, swapping of the enoyl reductase domain in the identified polyketide synthase led to the production of metabolites containing various polyketide chains with different levels of saturation. These findings have deepened our understanding of how fungi synthesize drimane-type sesquiterpenes and the corresponding esters.


Assuntos
Aspergillus/química , Ésteres/metabolismo , Sesquiterpenos/metabolismo , Aspergillus/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ésteres/química , Oxirredutases/metabolismo , Sesquiterpenos/química
4.
Metab Eng ; 48: 44-51, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29842926

RESUMO

Heterologous expression of multi-gene biosynthetic pathways in eukaryotic hosts is limited by highly regulated individual monocistrons. Dissimilar to prokaryotes, each eukaryotic gene is strictly controlled by its own regulatory elements, such as promoter and terminator. Consequently, parallel transcription can occur only when a group of genes is synchronously activated. A strategy to circumvent this limitation is the concerted expression of multiple genes as a polycistron. By exploiting the "stop-carry on" mechanism of picornaviruses, we have designed a sophisticated, yet easy-to-assemble vector system to heterologously express multiple genes under the control of a single promoter. For facile selection of correctly transformed colonies by basic fluorescence microscopy, our vector includes a split gene for a fluorescent reporter protein. This method was successfully applied to produce the psychotropic mushroom alkaloid psilocybin in high yields by heterologous expression of the entire biosynthetic gene cluster in the mould Aspergillus nidulans.


Assuntos
Aspergillus nidulans , Expressão Gênica , Genes Reporter , Engenharia Genética/métodos , Proteínas de Fluorescência Verde , Regiões Promotoras Genéticas , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Psilocibina/biossíntese , Psilocibina/genética
5.
J Struct Biol ; 187(1): 30-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24859793

RESUMO

The amyloid precursor protein (APP) and its cellular processing are believed to be centrally involved in the etiology of Alzheimer's disease (AD). In addition, many physiological functions have been described for APP, including a role in cell-cell- and cell-ECM-adhesion as well as in axonal outgrowth. We show here the molecular determinants of the oligomerization/dimerization of APP, which is central for its cellular (mis)function. Using size exclusion chromatography (SEC), dynamic light scattering and SEC-coupled static light scattering we demonstrate that the dimerization of APP is energetically induced by a heparin mediated dimerization of the E1 domain, which results in a dimeric interaction of E2. We also show that the acidic domain (AcD) interferes with the dimerization of E1 and propose a model where both, cis- and trans-dimerization occur dependent on cellular localization and function.


Assuntos
Precursor de Proteína beta-Amiloide/química , Heparina/química , Precursor de Proteína beta-Amiloide/genética , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Termodinâmica
6.
Biol Chem ; 395(5): 485-98, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24516000

RESUMO

The amyloid precursor protein (APP) and its processing are widely believed to be central for the etiology of Alzheimer's disease (AD) and appear essential for neuronal development and cell homeostasis in mammals. Many studies show the proteolysis of APP by the proteases α-, ß- and γ-secretase, functional aspects of the protein and the structure of individual domains. It is, however, largely unclear and currently also widely debated of how the structures of individual domains and their interactions determine the observed functionalities of APP and how they are arranged within the three-dimensional architecture of the entire protein. Further unanswered questions relate to the physiologic function of APP, the regulation of its proteolytic processing and the structural and functional effect of its cellular trafficking and processing. In this review, we summarize our current understanding of the structure-function-relationship of the multi-domain protein APP. This type-I transmembrane protein consists of the two folded E1 and E2 segments that are connected to one another and to the single transmembrane helix by flexible segments and likely fulfills several independent functions.


Assuntos
Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
7.
mBio ; 15(3): e0019524, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38380921

RESUMO

Sphingofungins are sphinganine analog mycotoxins acting as inhibitors of serine palmitoyl transferases, enzymes responsible for the first step in the sphingolipid biosynthesis. Eukaryotic cells are highly organized with various structures and organelles to facilitate cellular processes and chemical reactions, including the ones occurring as part of the secondary metabolism. We studied how sphingofungin biosynthesis is compartmentalized in the human-pathogenic fungus Aspergillus fumigatus, and we observed that it takes place in the endoplasmic reticulum (ER), ER-derived vesicles, and the cytosol. This implies that sphingofungin and sphingolipid biosynthesis colocalize to some extent. Automated analysis of confocal microscopy images confirmed the colocalization of the fluorescent proteins. Moreover, we demonstrated that the cluster-associated aminotransferase (SphA) and 3-ketoreductase (SphF) play a bifunctional role, supporting sphingolipid biosynthesis, and thereby antagonizing the toxic effects caused by sphingofungin production.IMPORTANCEA balanced sphingolipid homeostasis is critical for the proper functioning of eukaryotic cells. To this end, sphingolipid inhibitors have therapeutic potential against diseases related to the deregulation of sphingolipid balance. In addition, some of them have significant antifungal activity, suggesting that sphingolipid inhibitors-producing fungi have evolved mechanisms to escape self-poisoning. Here, we propose a novel self-defense mechanism, with cluster-associated genes coding for enzymes that play a dual role, being involved in both sphingofungin and sphingolipid production.


Assuntos
Aspergillus fumigatus , Esfingolipídeos , Humanos , Aspergillus fumigatus/genética , Homeostase , Metabolismo dos Lipídeos , Serina/metabolismo
8.
Proc Natl Acad Sci U S A ; 107(12): 5381-6, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20212142

RESUMO

The amyloid precursor protein (APP) is the key player in Alzheimer's disease pathology, yet APP and its analogues are also essential for neuronal development and cell homeostasis in mammals. We have determined the crystal structure of the entire N-terminal APP-E1 domain consisting of the growth factor like and the copper binding domains at 2.7-A resolution and show that E1 functions as a rigid functional entity. The two subdomains interact tightly in a pH-dependent manner via an evolutionarily conserved interface area. Two E1 entities dimerize upon their interaction with heparin, requiring 8-12 sugar rings to form the heparin-bridged APP-E1 dimer in an endothermic and pH-dependent process that is characterized by a low micromolar dissociation constant. Limited proteolysis confirms that the heparin-bridged E1 dimers obtained in solution correspond to a dimer contact in our crystal, enabling us to model this heparin-[APP-E1](2) complex. Correspondingly, the APP-based signal transduction, cell-cell- and/or cell-ECM interaction should depend on dimerization induced by heparin, as well as on pH, arguing that APP could fulfill different functions depending on its (sub)cellular localization.


Assuntos
Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Fenômenos Biofísicos , Cristalografia por Raios X , Heparina , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
9.
Microbiol Spectr ; 10(5): e0133122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36121228

RESUMO

Serine palmitoyltransferase catalyzes the first step of the sphingolipid biosynthesis. Recently, sphingolipid homeostasis has been connected to several human diseases, making serine palmitoyltransferases an interesting therapeutic target. Known and efficient serine palmitoyltransferase-inhibitors are sphingofungins, a group of natural products isolated from fungi. To further characterize newly isolated sphingofungins, we designed an easy to use colorimetric serine palmitoyltransferase activity assay using FadD, which can be performed in 96-well plates. Because sphingofungins exert antifungal activitiy as well, we compared the in vitro assay results with an in vivo growth assay using Saccharomyces cerevisiae. The reported experiments showed differences among the assayed sphingofungins, highlighting an increase of activity based on the saturation levels of the polyketide tail. IMPORTANCE Targeting the cellular sphingolipid metabolism is often discussed as a potential approach to treat associated human diseases such as cancer and Alzheimer's disease. Alternatively, it is also a possible target for the development of antifungal compounds, which are direly needed. A central role is played by the serine palmitoyltransferase, which catalyzes the initial and rate limiting step of sphingolipid de novo synthesis and, as such, the development of inhibitory compounds for this enzyme is of interest. Our work here established an alternative approach for determining the activity of serine palmitoyltransferase adding another tool for the validation of its inhibition. We also determined the effect of different modifications to sphingofungins on their inhibitory activity against serine palmitoyltransferase, revealing important differences on said activity against enzymes of bacterial and fungal origin.


Assuntos
Produtos Biológicos , Policetídeos , Humanos , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/farmacologia , Antifúngicos/farmacologia , Policetídeos/farmacologia , Aciltransferases/metabolismo , Aciltransferases/farmacologia , Saccharomyces cerevisiae , Esfingolipídeos/farmacologia , Serina/farmacologia
10.
Anal Sci Adv ; 3(11-12): 289-296, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38715841

RESUMO

Cell-free biosynthesis is emerging as a very attractive alternative for the production of market-relevant molecules. The free combination of enzymes, regardless of where they are isolated from, raises the possibility to build more efficient synthetic routes but at the same time leads to higher complexity regarding the analysis of the different enzymatic steps. Here we present an analytical method for the real-time analysis of acyl-CoA blocks forming and consuming during multi-step catalyses. We focused on malonyl-Coenzyme A and acetyl-CoA, which are the most used acyl-CoA units for carbon chain elongations. By employing capillary electrophoresis, we could detect the decrease of educts and the formation of products in a time-resolved fashion.

11.
ACS Chem Biol ; 17(2): 386-394, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35023724

RESUMO

Sphingofungins belong to a group of structurally related sphingolipid inhibitors produced by fungi, which specifically inhibit serine palmitoyl transferases, enzymes catalyzing the initial step during sphingolipid biosynthesis. Sphingolipids are integral parts of the eukaryotic cell membrane, and disturbances in their homeostasis have been linked to various human diseases. It has been suggested that external interventions, via sphingolipid inhibitors, may represent a promising approach for alternative therapies. Here, we identified and elucidated the biosynthetic gene cluster responsible for the biosynthesis of sphingofungins B, C, and D in Aspergillus fumigatus. Moreover, in vitro analyses have shown that sphingofungin biosynthesis starts with the condensation of a C18 polyketide with the uncommon substrate aminomalonate. Furthermore, the investigations on sphingofungin E and F produced by Paecilomyces variotii pointed out that different aminomalonate derivatives are used as substrates for those chemical variants. This research boosts knowledge on the general biosynthesis of sphingolipid inhibitors in fungi.


Assuntos
Fungos , Esfingolipídeos , Aspergillus fumigatus/metabolismo , Fungos/metabolismo , Humanos , Serina/metabolismo , Esfingolipídeos/metabolismo
12.
RSC Adv ; 10(66): 40588-40596, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35520868

RESUMO

In the present work, microgels were utilized as a cell-free reaction environment to produce a functional malonyl-CoA synthetase (deGFP-MatB) under geometry-controlled transcription and translation. Our approach combines the straight-forward optimization of overall protein yield of an E. coli-based cell-free protein synthesis (CFPS) system based on concentration screening of magnesium and potassium glutamate, DNA as well as polyethylene glycol (PEG), and its innovative usage in microgel-based production of a key enzyme of the polyketide synthesis pathway. After partial modification of the carboxyl groups of hyaluronic acid (HA) with 5'-methylfuran groups via 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM)-activation, these were further functionalized with dibenzocyclooctyne (DBCO) and nitrilotriacetic acid (NTA) groups by bio-orthogonal [4+2] Diels-Alder cycloaddition to yield a bifunctional macromer. After coupling the DBCO groups with azide-functionalized DNA, containing the genetic information for deGFP-MatB, via strain-promoted azide-alkyne cycloaddition (SPAAC), the DNA-/NTA-functionalized HA macromer was utilized as base material together with maleimide-functionalized PEG (PEG-mal2) as the crosslinker to form bifunctional microgels utilizing water-in-oil (W/O) microemulsions. As-formed microgels were incubated with nickel sulfate to activate the NTA groups and provide binding sites for deGFP-MatB, which contained six histidine residues (His-tag) for that purpose. The optimized CFPS mixture was loaded into the microgels to initiate the formation of deGFP-MatB, which was detected by a clear increase in fluorescence exclusively inside the microgel volume. Functionality of both, the bound and the decoupled enzyme was proven by reaction with malonate to yield malonyl CoA, as confirmed by a colorimetric assay.

13.
ACS Appl Mater Interfaces ; 12(18): 20982-20990, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268726

RESUMO

Smart biocatalysts, in which enzymes are conjugated to stimuli-responsive polymers, have gained considerable attention because of their catalytic switchability and recyclability. Although many systems have been developed, they require separate laboratory techniques for their recovery, making them unsuitable for many practical applications. To address these issues, we designed a thermomagneto-responsive biocatalyst by immobilizing an enzyme on the terminal of thermo-responsive polymer brushes tethered on magnetic nanoparticle (NP) clusters. The concept is demonstrated by a system consisting of iron oxide NPs, poly(N-isopropyl-acrylamide), and a malonyl-Coenzyme A synthetase (MatB). By using free malonate and coenzyme A (CoA), the designed catalyst exhibits adequate activity for the production of malonyl-CoA. Thanks to the use of a magnetic NP cluster, whose magnetic moment is high, this system is fully recoverable under the magnetic field at above 32 °C because of the collapse of the thermo-responsive polymer shell in the clusters. In addition, the recycled catalyst maintains moderate activity even after three cycles, and it also shows excellent catalytic switchability, that is, negligible catalytic activity at 25 °C because of the blockage of the active sites of the enzyme by the extended hydrophilic polymer chains but great catalytic activity at a temperatures above the lower critical solution temperature at which the enzymes are exposed to the reaction medium because of the thermo-responsive contraction of polymer chains. Because the azide functionality in our system can be easily functionalized depending upon our need, such catalytically switchable, fully recoverable, and recyclable multiresponsive catalytic systems can be of high relevance for other cell-free biosynthetic approaches.


Assuntos
Resinas Acrílicas/química , Proteínas de Bactérias/química , Coenzima A Ligases/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Malonil Coenzima A/síntese química , Biocatálise , Enzimas Imobilizadas/química , Fenômenos Magnéticos , Estudo de Prova de Conceito , Rhizobium/enzimologia , Temperatura
14.
mBio ; 11(3)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546615

RESUMO

Fumonisin (FB) mycotoxins produced by species of the genus Fusarium detrimentally affect human and animal health upon consumption, due to the inhibition of ceramide synthase. In the present work, we set out to identify mechanisms of self-protection employed by the FB1 producer Fusarium verticillioides FB1 biosynthesis was shown to be compartmentalized, and two cluster-encoded self-protection mechanisms were identified. First, the ATP-binding cassette transporter Fum19 acts as a repressor of the FUM gene cluster. Appropriately, FUM19 deletion and overexpression increased and decreased, respectively, the levels of intracellular and secreted FB1 Second, the cluster genes FUM17 and FUM18 were shown to be two of five ceramide synthase homologs in Fusarium verticillioides, grouping into the two clades CS-I and CS-II in a phylogenetic analysis. The ability of FUM18 to fully complement the yeast ceramide synthase null mutant LAG1/LAC1 demonstrated its functionality, while coexpression of FUM17 and CER3 partially complemented, likely via heterodimer formation. Cell viability assays revealed that Fum18 contributes to the fungal self-protection against FB1 and increases resistance by providing FUM cluster-encoded ceramide synthase activity.IMPORTANCE The biosynthesis of fungal natural products is highly regulated not only in terms of transcription and translation but also regarding the cellular localization of the biosynthetic pathway. In all eukaryotes, the endoplasmic reticulum (ER) is involved in the production of organelles, which are subject to cellular traffic or secretion. Here, we show that in Fusarium verticillioides, early steps in fumonisin production take place in the ER, together with ceramide biosynthesis, which is targeted by the mycotoxin. A first level of self-protection is given by the presence of a FUM cluster-encoded ceramide synthase, Fum18, hitherto uncharacterized. In addition, the final fumonisin biosynthetic step occurs in the cytosol and is thereby spatially separate from the fungal ceramide synthases. We suggest that these strategies help the fungus to avoid self-poisoning during mycotoxin production.


Assuntos
Vias Biossintéticas/genética , Fumonisinas/metabolismo , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Família Multigênica , Oxirredutases/genética , Compartimento Celular , Ceramidas/biossíntese , Retículo Endoplasmático/metabolismo , Fusarium/enzimologia , Genes Fúngicos , Oxirredutases/metabolismo , Filogenia , Esfingolipídeos/antagonistas & inibidores , Esfingolipídeos/biossíntese
15.
ACS Synth Biol ; 9(7): 1823-1832, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32525654

RESUMO

Combinatorial biosynthesis has great potential for designing synthetic circuits and amplifying the production of new active compounds. Studies on multienzyme cascades are extremely useful for improving our knowledge on enzymatic catalysis. In particular, the elucidation of enzyme substrate promiscuity can be potentially used for bioretrosynthetic approaches, leading to the design of alternative and more convenient routes to produce relevant molecules. In this perspective, plant-derived polyketides are extremely adaptable to those synthetic biological applications. Here, we present a combination of an in vitro CoA ligase activity assay coupled with a bacterial multigene expression system that leads to precursor-directed biosynthesis of 21 flavonoid derivatives. When the vast knowledge from protein databases is exploited, the herein presented procedure can be easily repeated with additional plant-derived polyketides. Lastly, we report an efficient in vivo expression system that can be further exploited to heterologously express pathways not necessarily related to plant polyketide synthases.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Flavanonas/biossíntese , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Aciltransferases , Proteínas de Arabidopsis , Chalconas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos , Malonil Coenzima A/metabolismo , Plasmídeos/genética , Especificidade por Substrato , Biologia Sintética/métodos
16.
mBio ; 10(2)2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914505

RESUMO

The pathogenic fungus Aspergillus fumigatus is able to adapt to extremely variable environmental conditions. The A. fumigatus genome contains four genes coding for mitogen-activated protein kinases (MAPKs), which are important regulatory knots involved in diverse cellular responses. From a clinical perspective, MAPK activity has been connected to salvage pathways, which can determine the failure of effective treatment of invasive mycoses using antifungal drugs. Here, we report the characterization of the Saccharomyces cerevisiae Fus3 ortholog in A. fumigatus, designated MpkB. We demonstrate that MpkB is important for conidiation and that its deletion induces a copious increase of dihydroxynaphthalene (DHN)-melanin production. Simultaneous deletion of mpkB and mpkA, the latter related to maintenance of the cell wall integrity, normalized DHN-melanin production. Localization studies revealed that MpkB translocates into the nuclei when A. fumigatus germlings are exposed to caspofungin stress, and this is dependent on the cross-talk interaction with MpkA. Additionally, DHN-melanin formation was also increased after deletion of genes coding for the Gα protein GpaA and for the G protein-coupled receptor GprM. Yeast two-hybrid and coimmunoprecipitation assays confirmed that GpaA and GprM interact, suggesting their role in the MpkB signaling cascade.IMPORTANCEAspergillus fumigatus is the most important airborne human pathogenic fungus, causing thousands of deaths per year. Its lethality is due to late and often inaccurate diagnosis and the lack of efficient therapeutics. The failure of efficient prophylaxis and therapy is based on the ability of this pathogen to activate numerous salvage pathways that are capable of overcoming the different drug-derived stresses. A major role in the protection of A. fumigatus is played by melanins. Melanins are cell wall-associated macromolecules classified as virulence determinants. The understanding of the various signaling pathways acting in this organism can be used to elucidate the mechanism beyond melanin production and help to identify ideal drug targets.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/metabolismo , Melaninas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Naftóis/metabolismo , Mapas de Interação de Proteínas , Esporos Fúngicos/crescimento & desenvolvimento , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/genética
17.
J Mol Biol ; 427(2): 433-42, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25528641

RESUMO

The amyloid precursor protein (APP) and its proteolytic cleavage product Aß are widely believed to be central to the etiology of Alzheimer's disease (AD). APP and its family members are also essential for proper neuronal development and homeostasis. APP is located at the cell surface and within intracellular compartments, cellular regions that exhibit different pH values. The AD-associated amyloidogenic processing of APP is initiated predominantly in intracellular acidic compartments, whereas its non-amyloidogenic cleavage is initiated at the cell surface at slightly basic pH. We analyzed the influence of pH on the APP-E1 domain and found that its two constituting subdomains, GFLD and CuBD, interact with each other in a pH-dependent manner. Dynamic light scattering showed that APP-E1 represents a more open conformation at neutral pH and a more closed conformation at acidic pH. Analyzing a 1.4 Å, high-resolution X-ray structure of E1 derived from merohedrally twinned crystals resulted in the identification of individual residues that are responsible for these pH-dependent interactions. Mutational studies and dynamic light scattering measurements further proved that specific hydrogen bonds between the two carboxylates of D177 and E87, as well as between N89 and H147, are major determinants of this pH-driven conformational switch in APP-E1. These findings show how APP can adopt different conformations depending on pH and suggest that the protein fulfils different functions at distinct localizations within the cell. Additionally, our data suggest a novel strategy for treating AD based on regulating the amyloidogenic processing of APP by the specific interruption of the interaction between the APP-E1 subdomains.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Conformação Proteica , Doença de Alzheimer/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Peso Molecular , Mutação , Domínios e Motivos de Interação entre Proteínas , Proteólise
18.
PLoS One ; 8(8): e72177, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977245

RESUMO

The ubiquitous 24-meric iron-storage protein ferritin and multicopper oxidases such as ceruloplasmin or hephaestin catalyze oxidation of Fe(II) to Fe(III), using molecular oxygen as oxidant. The ferroxidase activity of these proteins is essential for cellular iron homeostasis. It has been reported that the amyloid precursor protein (APP) also has ferroxidase activity. The activity is assigned to a ferroxidase site in the E2 domain of APP. A synthetic 22-residue peptide that carries the putative ferroxidase site of E2 domain (FD1 peptide) has been claimed to encompass the same activity. We previously tested the ferroxidase activity of the synthetic FD1 peptide but we did not observe any activity above the background oxidation of Fe(II) by molecular oxygen. Here we used isothermal titration calorimetry to study Zn(II) and Fe(II) binding to the natural E2 domain of APP, and we employed the transferrin assay and oxygen consumption measurements to test the ferroxidase activity of the E2 domain. We found that this domain neither in the presence nor in the absence of the E1 domain binds Fe(II) and it is not able to catalyze the oxidation of Fe(II). Binding of Cu(II) to the E2 domain did not induce ferroxidase activity contrary to the presence of redox active Cu(II) centers in ceruloplasmin or hephaestin. Thus, we conclude that E2 or E1 domains of APP do not have ferroxidase activity and that the potential involvement of APP as a ferroxidase in the pathology of Alzheimer's disease must be re-evaluated.


Assuntos
Precursor de Proteína beta-Amiloide/química , Cobre/química , Ferro/química , Oxigênio/química , Proteínas Recombinantes/química , Precursor de Proteína beta-Amiloide/genética , Sítios de Ligação , Calorimetria , Cátions Bivalentes , Ceruloplasmina , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Cinética , Modelos Moleculares , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Termodinâmica , Transferrina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA