RESUMO
AIMS: Although highly heritable, the genetic etiology of calcific aortic stenosis (AS) remains incompletely understood. The aim of this study was to discover novel genetic contributors to AS and to integrate functional, expression, and cross-phenotype data to identify mechanisms of AS. METHODS AND RESULTS: A genome-wide meta-analysis of 11.6 million variants in 10 cohorts involving 653 867 European ancestry participants (13 765 cases) was performed. Seventeen loci were associated with AS at P ≤ 5 × 10-8, of which 15 replicated in an independent cohort of 90 828 participants (7111 cases), including CELSR2-SORT1, NLRP6, and SMC2. A genetic risk score comprised of the index variants was associated with AS [odds ratio (OR) per standard deviation, 1.31; 95% confidence interval (CI), 1.26-1.35; P = 2.7 × 10-51] and aortic valve calcium (OR per standard deviation, 1.22; 95% CI, 1.08-1.37; P = 1.4 × 10-3), after adjustment for known risk factors. A phenome-wide association study indicated multiple associations with coronary artery disease, apolipoprotein B, and triglycerides. Mendelian randomization supported a causal role for apolipoprotein B-containing lipoprotein particles in AS (OR per g/L of apolipoprotein B, 3.85; 95% CI, 2.90-5.12; P = 2.1 × 10-20) and replicated previous findings of causality for lipoprotein(a) (OR per natural logarithm, 1.20; 95% CI, 1.17-1.23; P = 4.8 × 10-73) and body mass index (OR per kg/m2, 1.07; 95% CI, 1.05-1.9; P = 1.9 × 10-12). Colocalization analyses using the GTEx database identified a role for differential expression of the genes LPA, SORT1, ACTR2, NOTCH4, IL6R, and FADS. CONCLUSION: Dyslipidemia, inflammation, calcification, and adiposity play important roles in the etiology of AS, implicating novel treatments and prevention strategies.
Assuntos
Estenose da Valva Aórtica , Dislipidemias , Humanos , Estudo de Associação Genômica Ampla/métodos , Adiposidade/genética , Predisposição Genética para Doença , Estenose da Valva Aórtica/genética , Obesidade , Fatores de Risco , Inflamação , Dislipidemias/complicações , Dislipidemias/genética , Apolipoproteínas/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
OBJECTIVE: Lp(a) (lipoprotein[a]) is an independent risk factor for cardiovascular diseases and plasma levels are primarily determined by variation at the LPA locus. We performed a genome-wide association study in the UK Biobank to determine whether additional loci influence Lp(a) levels. Approach and Results: We included 293 274 White British individuals in the discovery analysis. Approximately 93 095 623 variants were tested for association with natural log-transformed Lp(a) levels using linear regression models adjusted for age, sex, genotype batch, and 20 principal components of genetic ancestry. After quality control, 131 independent variants were associated at genome-wide significance (P≤5×10-8). In addition to validating previous associations at LPA, APOE, and CETP, we identified a novel variant at the APOH locus, encoding ß2GPI (beta2-glycoprotein I). The APOH variant rs8178824 was associated with increased Lp(a) levels (ß [95% CI] [ln nmol/L], 0.064 [0.047-0.081]; P=2.8×10-13) and demonstrated a stronger effect after adjustment for variation at the LPA locus (ß [95% CI] [ln nmol/L], 0.089 [0.076-0.10]; P=3.8×10-42). This association was replicated in a meta-analysis of 5465 European-ancestry individuals from the Framingham Offspring Study and Multi-Ethnic Study of Atherosclerosis (ß [95% CI] [ln mg/dL], 0.16 [0.044-0.28]; P=0.0071). CONCLUSIONS: In a large-scale genome-wide association study of Lp(a) levels, we identified APOH as a novel locus for Lp(a) in individuals of European ancestry. Additional studies are needed to determine the precise role of ß2GPI in influencing Lp(a) levels as well as its potential as a therapeutic target.
Assuntos
Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/genética , Loci Gênicos , Variação Genética , Lipoproteína(a)/sangue , beta 2-Glicoproteína I/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Doenças Cardiovasculares/epidemiologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Medição de RiscoRESUMO
OBJECTIVES: Randomized controlled trials in the ICU often fail to show differences in endpoints between groups. We sought to explore reasons for this at a molecular level by analyzing transcriptomic data from a recent negative trial. Our objectives were to determine if randomization successfully balanced transcriptomic features between groups, to assess transcriptomic heterogeneity among the study subjects included, and to determine if the study drug had any effect at the gene expression level. DESIGN: Bioinformatics analysis of transcriptomic and clinical data collected in the course of a randomized controlled trial. SETTING: Tertiary academic mixed medical-surgical ICU. PATIENTS: Adult, critically ill patients expected to require invasive mechanical ventilation more than 48 hours. INTERVENTIONS: Lactoferrin or placebo delivered enterally and via an oral swab for up to 28 days. MEASUREMENTS AND MAIN RESULTS: We found no major imbalances in transcriptomic features between groups. Unsupervised analysis did not reveal distinct clusters among patients at the time of enrollment. There were marked differences in gene expression between early and later time points. Patients in the lactoferrin group showed changes in the expression of genes associated with immune pathways known to be associated with lactoferrin. CONCLUSIONS: In this clinical trial, transcriptomic data provided a useful complement to clinical data, suggesting that the reasons for the negative result were less likely related to the biological efficacy of the study drug, and may instead have been related to poor sensitivity of the clinical outcomes. In larger studies, transcriptomics may also prove useful in predicting response to treatment.