Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Adv ; 9(17): eadf8998, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115929

RESUMO

The environmental preferences of many microbes remain undetermined. This is the case for bacterial pH preferences, which can be difficult to predict a priori despite the importance of pH as a factor structuring bacterial communities in many systems. We compiled data on bacterial distributions from five datasets spanning pH gradients in soil and freshwater systems (1470 samples), quantified the pH preferences of bacterial taxa across these datasets, and compiled genomic data from representative bacterial taxa. While taxonomic and phylogenetic information were generally poor predictors of bacterial pH preferences, we identified genes consistently associated with pH preference across environments. We then developed and validated a machine learning model to estimate bacterial pH preferences from genomic information alone, a model that could aid in the selection of microbial inoculants, improve species distribution models, or help design effective cultivation strategies. More generally, we demonstrate the value of combining biogeographic and genomic data to infer and predict the environmental preferences of diverse bacterial taxa.


Assuntos
Bactérias , Microbiologia do Solo , Filogenia , Bactérias/genética , Solo , Concentração de Íons de Hidrogênio
2.
Front Microbiol ; 12: 714920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489903

RESUMO

Hydrogenotrophic methanogens are ubiquitous chemoautotrophic archaea inhabiting globally distributed deep-sea hydrothermal vent ecosystems and associated subseafloor niches within the rocky subseafloor, yet little is known about how they adapt and diversify in these habitats. To determine genomic variation and selection pressure within methanogenic populations at vents, we examined five Methanothermococcus single cell amplified genomes (SAGs) in conjunction with 15 metagenomes and 10 metatranscriptomes from venting fluids at two geochemically distinct hydrothermal vent fields on the Mid-Cayman Rise in the Caribbean Sea. We observed that some Methanothermococcus lineages and their transcripts were more abundant than others in individual vent sites, indicating differential fitness among lineages. The relative abundances of lineages represented by SAGs in each of the samples matched phylogenetic relationships based on single-copy universal genes, and genes related to nitrogen fixation and the CRISPR/Cas immune system were among those differentiating the clades. Lineages possessing these genes were less abundant than those missing that genomic region. Overall, patterns in nucleotide variation indicated that the population dynamics of Methanothermococcus were not governed by clonal expansions or selective sweeps, at least in the habitats and sampling times included in this study. Together, our results show that although specific lineages of Methanothermococcus co-exist in these habitats, some outcompete others, and possession of accessory metabolic functions does not necessarily provide a fitness advantage in these habitats in all conditions. This work highlights the power of combining single-cell, metagenomic, and metatranscriptomic datasets to determine how evolution shapes microbial abundance and diversity in hydrothermal vent ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA