RESUMO
Mycobacterium tuberculosis (Mtb) genetic micro-diversity in clinical isolates may underline mycobacterial adaptation to tuberculosis (TB) infection and provide insights to anti-TB treatment response and emergence of resistance. Herein we followed within-host evolution of Mtb clinical isolates in two cohorts of TB patients, either with delayed Mtb culture conversion (> 2 months), or with fast culture conversion (< 2 months). We captured the genetic diversity of Mtb isolates obtained in each patient, by focusing on minor variants detected as unfixed single nucleotide polymorphisms (SNPs). To unmask antibiotic tolerant sub-populations, we exposed these isolates to rifampicin (RIF) prior to whole genome sequencing (WGS) analysis. Thanks to WGS, we detected at least 1 unfixed SNP within the Mtb isolates for 9/15 patients with delayed culture conversion, and non-synonymous (ns) SNPs for 8/15 patients. Furthermore, RIF exposure revealed 9 additional unfixed nsSNP from 6/15 isolates unlinked to drug resistance. By contrast, in the fast culture conversion cohort, RIF exposure only revealed 2 unfixed nsSNP from 2/20 patients. To better understand the dynamics of Mtb micro-diversity, we investigated the variant composition of a persistent Mtb clinical isolate before and after controlled stress experiments mimicking the course of TB disease. A minor variant, featuring a particular mycocerosates profile, became enriched during both RIF exposure and macrophage infection. The variant was associated with drug tolerance and intracellular persistence, consistent with the pharmacological modeling predicting increased risk of treatment failure. A thorough study of such variants not necessarily linked to canonical drug-resistance, but which are prone to promote anti-TB drug tolerance, may be crucial to prevent the subsequent emergence of resistance. Taken together, the present findings support the further exploration of Mtb micro-diversity as a promising tool to detect patients at risk of poorly responding to anti-TB treatment, ultimately allowing improved and personalized TB management.
Assuntos
Antibióticos Antituberculose/uso terapêutico , Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genética , Rifampina/uso terapêutico , Tuberculose/microbiologia , Humanos , Polimorfismo de Nucleotídeo Único , Tuberculose/tratamento farmacológicoRESUMO
Patients with chronic obstructive pulmonary disease (COPD) exhibit frequent acute exacerbations (AE). The objectives of this study were first to evaluate the prevalence of pathogens associated to these episodes by combining conventional bacteriology and multiplex viral and bacterial PCR assays in sputum specimens, and second to determine whether C-reactive protein (CRP) value and clinical outcome could be influenced by the type of microbial agent(s) recovered from these samples. A cohort of 84 Tunisian patients hospitalized at the emergency room for AECOPD was investigated prospectively for the semi-quantitative detection of bacteria by conventional culture (the threshold of positivity was of 107 CFU/ml) and for the detection of viral genome and DNA of atypical bacteria by quantitative PCR using two commercial multiplex respiratory kits (Seegene and Fast-track). The two kits exhibited very similar performances although the Seegene assay was a bit more sensitive. A large number and variety of pathogens were recovered from the sputum samples of these 84 patients, including 15 conventional bacteria, one Chlamydia pneumoniae and 63 respiratory viruses, the most prevalent being rhinoviruses (n = 33) and influenza viruses (n = 13). From complete results available for 74 patients, the presence of bacteria was significantly associated with risk of recurrence at 6 and 12 months post-infection. The combination of these different markers appears useful for delineating correctly the antimicrobial treatment and for initiating a long-term surveillance in those patients with high risk of recurrent exacerbation episodes. A prospective study is required for confirming the benefits of this strategy aimed at improving the stewardship of antibiotics.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Viroses , Antibacterianos/uso terapêutico , Anti-Infecciosos , Bactérias , Humanos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Escarro , Viroses/complicações , Viroses/tratamento farmacológico , Viroses/epidemiologiaRESUMO
The interplay between respiratory syncytial virus (RSV) and the p53 pathway has only been reported in a limited number of studies, yet the underlying abrogation mechanisms of p53 activity during the time course of infection, possibly involving viral proteins, remained unclear. Here, we demonstrate that RSV infection impairs global p53 transcriptional activity, notably via its proteasome-dependent degradation at late stages of infection. We also demonstrate that NS1 and NS2 contribute to the abrogation of p53 activity, and used different experimental strategies (e.g. siRNA, small molecules) to underline the antiviral contribution of p53 in the context of RSV infection. Notably, our study highlights a strong RSV-induced disequilibrium of the p53/NF-κB functional balance, which appears to contribute to the up-regulation of the expression of several proinflammatory cytokines and chemokines.
Assuntos
Citocinas/imunologia , NF-kappa B/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Citocinas/genética , Humanos , NF-kappa B/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismoRESUMO
Respiratory syncytial virus (RSV), a major etiologic agent of acute lower respiratory infection constitutes the most important cause of death in young children worldwide. Viral/bacterial mixed infections are related to severity of respiratory inflammatory diseases, but the underlying mechanisms remain poorly understood. We have previously investigated the intracellular mechanisms that mediate the immune response in the context of influenza virus/Streptococcus pneumoniae (Sp) co-infection using a model of human monocyte-derived macrophages (MDMs). Here, we set up and characterized a similar model of MDMs to investigate different scenarios of RSV infection and co-infection with Sp. Our results suggest that Sp contributes to a faster and possibly higher level of CXCL10/IP-10 expression induced by RSV infection in human MDMs.
Assuntos
Quimiocina CXCL10/metabolismo , Coinfecção/imunologia , Macrófagos/imunologia , Infecções Pneumocócicas/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Quimiocina CXCL10/genética , Humanos , Macrófagos/microbiologia , Macrófagos/virologiaRESUMO
BACKGROUND: Data on the etiologies of pneumonia among children are inadequate, especially in developing countries. The principal objective is to undertake a multicenter incident case-control study of <5-year-old children hospitalized with pneumonia in developing and emerging countries, aiming to identify the causative agents involved in pneumonia while assessing individual and microbial factors associated with the risk of severe pneumonia. METHODS/DESIGN: A multicenter case-control study, based on the GABRIEL network, is ongoing. Ten study sites are located in 9 countries over 3 continents: Brazil, Cambodia, China, Haiti, India, Madagascar, Mali, Mongolia, and Paraguay. At least 1,000 incident cases and 1,000 controls will be enrolled and matched for age and date. Cases are hospitalized children <5 years with radiologically confirmed pneumonia, and the controls are children without any features suggestive of pneumonia. Respiratory specimens are collected from all enrolled subjects to identify 19 viruses and 5 bacteria. Whole blood from pneumonia cases is being tested for 3 major bacteria. S. pneumoniae-positive specimens are serotyped. Urine samples from cases only are tested for detection of antimicrobial activity. The association between procalcitonin, C-reactive protein and pathogens is being evaluated. A discovery platform will enable pathogen identification in undiagnosed samples. DISCUSSION: This multicenter study will provide descriptive results for better understanding of pathogens responsible for pneumonia among children in developing countries. The identification of determinants related to microorganisms associated with pneumonia and its severity should facilitate treatment and prevention.
Assuntos
Protocolos Clínicos , Países em Desenvolvimento , Pneumonia/etiologia , Antibacterianos/urina , Bactérias/isolamento & purificação , Brasil , Proteína C-Reativa/metabolismo , Calcitonina/sangue , Peptídeo Relacionado com Gene de Calcitonina , Camboja , Estudos de Casos e Controles , Pré-Escolar , China , Feminino , Haiti , Humanos , Índia , Lactente , Madagáscar , Masculino , Mali , Mongólia , Paraguai , Derrame Pleural/microbiologia , Pneumonia/sangue , Pneumonia/metabolismo , Pneumonia/urina , Precursores de Proteínas/sangue , Vírus/isolamento & purificaçãoRESUMO
INTRODUCTION: The WHO estimates a gap of about 30% between the incident (10.6 million) and notified (7.5 million) cases of tuberculosis (TB). Combined with the growing recognition in prevalence surveys of the high proportion of cases identified who are asymptomatic or paucisymptomatic, these data underscore how current symptom screening approaches and use of diagnostic tests with suboptimal performance on sputum miss large numbers of cases. Thus, the development of sputum-free biomarker-based tests for diagnosis is becoming necessary, which the WHO has already identified as a priority for new TB diagnostics.The objective of this study is to evaluate a combination of exhaled breath condensate (EBC) samples and mycobacterial lipoarabinomannan (LAM) as point-of-care (POC) assays to identify TB patients. METHODS AND ANALYSIS: This prospective diagnostic accuracy study is conducted at the TB Screening and Treatment Centre of International Center for Diarrhoeal Disease Research, Bangladesh, on a cohort of adults and adolescents >11 years of age. A total of 614 individuals with presumptive pulmonary TB based on TB signs, symptoms and radiography are being recruited from 28 August 2023. Spot sputum is collected for standard reference testing (L-J culture, GeneXpert MTB/Rif, acid-fast Bacilli microscopy) to fine-tune categorisation of TB disease status for each participant, defined as (1) definite TB (at least one positive standard reference test); (2) probable TB (not microbiologically confirmed but under TB treatment); (3) possible TB (no TB treatment but signs, symptoms and radiography suggestive of TB); (4) other respiratory disease (microbiologically not confirmed and no radiography presenting abnormalities compatible with TB); and (5) unknown (no microbiological evidence with normal/no TB abnormalities with radiography). Urine and EBC specimens will be subjected to LAM POC testing and biobanked for further investigation. Statistical analyses will include an assessment of diagnostic accuracy by constructing receiver operating curves and calculating sensitivity and specificity, as well as post-test probabilities. ETHICS AND DISSEMINATION: The study protocol was approved by the Research Review Committee as well as the Ethical Review Committee of icddr,b and recorded under a protocol reference number, PR-2301. Results will be submitted to open-access peer-reviewed journals, presented at academic meetings, and shared with national and international policymaking bodies.
Assuntos
Testes Respiratórios , Lipopolissacarídeos , Tuberculose Pulmonar , Humanos , Lipopolissacarídeos/análise , Tuberculose Pulmonar/diagnóstico , Testes Respiratórios/métodos , Estudos Prospectivos , Biomarcadores/análise , Bangladesh , Adulto , Testes Imediatos , Sensibilidade e Especificidade , Sistemas Automatizados de Assistência Junto ao Leito , Masculino , Feminino , Adolescente , Mycobacterium tuberculosis/isolamento & purificação , Escarro/microbiologiaRESUMO
Introduction: New diagnostic tools are needed to rapidly assess the efficacy of pulmonary tuberculosis (PTB) treatment. The aim of this study was to evaluate several immune biomarkers in an observational and cross-sectional cohort study conducted in Paraguay. Methods: Thirty-two patients with clinically and microbiologically confirmed PTB were evaluated before starting treatment (T0), after 2 months of treatment (T1) and at the end of treatment (T2). At each timepoint plasma levels of IFN-y, 17 pro- and anti-inflammatory cytokines/chemokines and complement factors C1q, C3 and C4 were assessed in unstimulated and Mtb-specific stimulated whole blood samples using QuantiFERON-TB gold plus and recombinant Mycobacterium smegmatis heparin binding hemagglutinin (rmsHBHA) as stimulation antigen. Complete blood counts and liver enzyme assays were also evaluated and correlated with biomarker levels in plasma. Results: In unstimulated plasma, C1q (P<0.001), C4 (P<0.001), hemoglobin (P<0.001), lymphocyte proportion (P<0.001) and absolute white blood cell count (P=0.01) were significantly higher in PTB patients at baseline than in cured patients. C1q and C4 levels were found to be related to Mycobacterium tuberculosis load in sputum. Finally, a combinatorial analysis identified a plasma host signature comprising the detection of C1q and IL-13 levels in response to rmsHBHA as a tool differentiating PTB patients from cured TB profiles, with an AUC of 0.92 (sensitivity 94% and specificity 79%). Conclusion: This observational study provides new insights on host immune responses throughout anti-TB treatment and emphasizes the role of host C1q and HBHA-specific IL-13 response as surrogate plasma biomarkers for monitoring TB treatment efficacy.
Assuntos
Tuberculose Pulmonar , Tuberculose , Humanos , Interleucina-13 , Complemento C1q , Paraguai , Estudos Transversais , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Biomarcadores , Estudos de CoortesRESUMO
To evaluate the diagnostic performance of Xpert MTB/RIF Ultra (Ultra) for the diagnosis of extrapulmonary tuberculosis (EPTB) from different types of extrapulmonary specimens in comparison with culture and composite microbiological reference standard (CRS). A total of 240 specimens were prospectively collected from presumptive EPTB patients between July 2021-January 2022 and tested by Ultra, Xpert, culture and acid-fast bacilli (AFB) smear microscopy. Out of 240 specimens, 35.8 %, 20.8 %, 11.3 %, and 7.1 % were detected as Mycobacterium tuberculosis complex by Ultra, Xpert, culture and AFB microscopy, respectively. An additional 15.0 % cases were detected by Ultra compared to Xpert MTB/RIF (Xpert) assay. A total of 28 (11.7 %) cases were identified as 'trace' category by Ultra with indeterminate rifampicin resistance result; of which 36.4 % were clinically confirmed as EPTB. Compared to culture, the sensitivity and specificity of Ultra and Xpert were 100 % and 72.3 %; 92.6 % and 88.3 %, respectively. In comparison with CRS, these were respectively: 98.9 % and 100 %; 57.5 % and 100 %. For individual category of specimens, sensitivity of Ultra was 100 % with varying specificity. We found that Ultra was highly sensitive for the rapid diagnosis of EPTB and has extensive potential over current diagnostics in high TB burden countries, but 'trace' results should be interpreted with caution.
Assuntos
Antibióticos Antituberculose , Mycobacterium tuberculosis , Tuberculose Extrapulmonar , Tuberculose , Humanos , Rifampina/farmacologia , Rifampina/uso terapêutico , Mycobacterium tuberculosis/genética , Prevalência , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Tuberculose/tratamento farmacológico , Sensibilidade e Especificidade , Antibióticos Antituberculose/farmacologia , Antibióticos Antituberculose/uso terapêutico , Farmacorresistência Bacteriana/genéticaRESUMO
Background: Around one-quarter of the global population has latent tuberculosis infection (LTBI). If left untreated, LTBI has 5-10% lifetime risk of developing into TB. Interferon-gamma release Assays (IGRAs) are more sensitive than the tuberculin skin test for LTBI detection. However, the high cost and complexity of IGRAs are barriers to adoption in resource-constrained settings. This study evaluated the diagnostic performance of a more affordable IGRA, Standard E TB-Feron (TBE), among different risk groups in Bangladesh. Methods: 532 participants of all age groups were enrolled from the TB Screening and Treatment Centers and Dhaka Hospital of icddr,b between June and September 2023. The participants were categorized into four risk groups: healthy people, healthcare workers/ attendants of TB patients, patients with microbiologically confirmed TB, and people with a history of TB. The diagnostic performance of TBE was compared to QuantiFERON-TB Gold Plus (QFT-Plus) for all groups. GeneXpert, culture, and microscopy were used to confirm TB microbiologically. Results: TBE had an overall agreement of 85.9% (95% CI, 82.5% to 88.7%), positive percent agreement of 86.1% (95% CI, 80.6% to 90.5%), and negative percent agreement of 85.7% (95% CI, 81.3% -89.4%) with QFT-Plus. Among 81 culture-positive patients, TBE and QFT-Plus were positive for 60 (74.1%) and 62 (76.5%) respectively. Among healthy people, TBE and QFT results were positive for 49 (24.5%) and 59 (29.5%) respectively. Among health workers and contacts, TBE and QFT-Plus were positive for 79 (39.5%) and 73 (35.5%) respectively. Conclusion: We found a substantial agreement (Cohen's kappa of 0.71) between TBE and QFT-Plus in detecting LTBI across different groups, suggesting its potential as a cost-effective diagnostic tool. Implementation of TBE in routine clinical practice could increase accessibility to LTBI diagnosis, facilitating the timely initiation of preventative therapy, and leading to a reduction of active TB incidence.
RESUMO
The effect of helminthiasis on host immunity is a neglected area of research, particularly in tuberculosis (TB) infection. This study aimed to evaluate the effect of helminthiasis on immunological and haematological parameters in newly diagnosed TB patients in Bobo-Dioulasso. After all biological analyses, we formed three subpopulations: group 1 (n = 82), as control, were participants without helminthic or Mycobacterium tuberculosis complex infection (Mtb-/Helm-), group 2 (n = 73) were TB patients without helminthic infection (Mtb+/Helm-), and group 3 (n = 22) were TB patients with helminthic infection (Mtb+/Helm+). The proportion of helminth coinfection was 23.16% (22/95) in TB patients, and Schistosoma mansoni infection was found in 77.3% (17/22) cases of helminthiasis observed in this study. A low CD4 T cell count and a low CD4:CD8 ratio were significantly associated with concomitant infection with helminths and the Mtb complex (Mtb+/Helm+) compared to the other groups (p < 0.05). However, there was no statistically significant difference in the CD8 median among the three participating groups (p > 0.05). Lymphopenia, monocytosis, thrombocytosis, and hypochromic microcytic anaemia were the haematological defects observed in the Mtb+/Helm+ and Mtb+/Helm- patients. Exploring these types of immune-haematological biomarkers would be a valuable aid in diagnosing and a better follow-up and monitoring of the tuberculosis-helminthiasis coinfection.
RESUMO
BACKGROUND: Madagascar was one of the first African countries to be affected by the 2009 pandemic of influenza A virus subtype H1N1 [A(H1N1)pdm2009] infection. The outbreak started in the capital city, Antananarivo, and then spread throughout the country from October 2009 through February 2010. METHODS: Specimens from patients presenting with influenza-like illness were collected and shipped to the National Influenza Center in Madagascar for analyses, together with forms containing patient demographic and clinical information. RESULTS: Of the 2303 specimens tested, 1016 (44.1%) and 131 (5.7%) yielded A(H1N1)pdm09 and seasonal influenza virus, respectively. Most specimens (42.0%) received were collected from patients <10 years old. Patients <20 years old were more likely than patients >50 years old to be infected with A(H1N1)pdm09 (odds ratio, 2.1; 95% confidence interval, 1.7-2.6; P < .01). Although phylogenetic analyses of A(H1N1)pdm09 suggested multiple introductions of the virus into Madagascar, no antigenic differences between A(H1N1)pdm09 viruses recovered in Madagascar and those that circulated worldwide were observed. CONCLUSIONS: The high proportion of respiratory specimens positive for A(H1N1)pdm09 is consistent with a widespread transmission of the pandemic in Madagascar. The age distribution of cases of A(H1N1)pdm09 infection suggests that children and young adults could be targeted for interventions that aim to reduce transmission during an influenza pandemic.
Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Pandemias , Adolescente , Adulto , Distribuição por Idade , Idoso , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/classificação , Madagáscar/epidemiologia , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Adulto JovemRESUMO
Background: The world is facing a 2019 coronavirus (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this context, efficient serological assays are needed to accurately describe the humoral responses against the virus. These tools could potentially provide temporal and clinical characteristics and are thus paramount in developing-countries lacking sufficient ongoing COVID-19 epidemic descriptions. Methods: We developed and validated a Luminex xMAP® multiplex serological assay targeting specific IgM and IgG antibodies against the SARS-CoV-2 Spike subunit 1 (S1), Spike subunit 2 (S2), Spike Receptor Binding Domain (RBD) and the Nucleocapsid protein (N). Blood samples collected periodically for 12 months from 43 patients diagnosed with COVID-19 in Madagascar were tested for these antibodies. A random forest algorithm was used to build a predictive model of time since infection and symptom presentation. Findings: The performance of the multiplex serological assay was evaluated for the detection of SARS-CoV-2 anti-IgG and anti-IgM antibodies. Both sensitivity and specificity were equal to 100% (89.85-100) for S1, RBD and N (S2 had a lower specificity = 95%) for IgG at day 14 after enrolment. This multiplex assay compared with two commercialized ELISA kits, showed a higher sensitivity. Principal Component Analysis was performed on serologic data to group patients according to time of sample collection and clinical presentations. The random forest algorithm built by this approach predicted symptom presentation and time since infection with an accuracy of 87.1% (95% CI = 70.17-96.37, p-value = 0.0016), and 80% (95% CI = 61.43-92.29, p-value = 0.0001) respectively. Interpretation: This study demonstrates that the statistical model predicts time since infection and previous symptom presentation using IgM and IgG response to SARS-CoV2. This tool may be useful for global surveillance, discriminating recent- and past- SARS-CoV-2 infection, and assessing disease severity. Fundings: This study was funded by the French Ministry for Europe and Foreign Affairs through the REPAIR COVID-19-Africa project coordinated by the Pasteur International Network association. WANTAI reagents were provided by WHO AFRO as part of a Sero-epidemiological "Unity" Study Grant/Award Number: 2020/1,019,828-0 P·O 202546047 and Initiative 5% grant n°AP-5PC-2018-03-RO.
RESUMO
Introduction: Tuberculosis (TB) treatment requires the combination of multiple anti-TB drugs during 6 months or more depending on strain drug susceptibility profile. Optimizing the monitoring of anti-TB therapy efficacy is required to provide adequate care and prevent drug resistance emergence. Moreover, accurate monitoring tools are needed for the development of strategies aiming at reducing treatment duration. Opti-4TB is a "proof of concept" study aiming at developing a blood-based monitoring of TB outcome by deciphering host immune signatures associated with latency or disease activity through the combination of "omic" methods. The primary objective is to assess the performances of new biomarkers for TB outcome prediction and to determine specific profiles associated with the outcome of treated TB patients. Methods and analysis: Opti-4TB is a prospective, single center study including adult patients hospitalized for pulmonary TB. A workflow will be set up to study the immune status of 40 TB patients and 20 controls with latent TB infection. Blood samples will be collected at four timepoints: before treatment initiation (V1), at day 15 (V2), at 2 months (V3) and at 6 months (V4). Mtb-specific immune responses will be assessed at each timepoint with three different assays: (1) A whole blood transcriptomic signature assessing the "RISK-6" score; (2) A proteomic signature based on 27 cytokines and chemokines measured in plasma; (3) An immunophenotypic monitoring of circulating T-cell subpopulations using spectral flow cytometry. This in depth characterization of Mtb-specific immune response throughout the treatment, correlated with clinical outcomes, will lay the basis for the elaboration of the most basic and universal stage-specific immune signatures associated with latency, active disease and cure. Ethics and dissemination: Ethical approval has been obtained from the institutional review board (n°69HCL18_0757). Results will be communicated at scientific meetings and submitted for publication in peer-reviewed journals. Trial registration number: NCT04271397.
RESUMO
There is a need for rapid non-sputum-based tests to identify and treat patients infected with Mycobacterium tuberculosis (Mtb). The overall objective of this study was to measure and compare the expression of a selected panel of human plasma proteins in patients with active pulmonary tuberculosis (ATB) throughout anti-TB treatment (from baseline to the end of treatment), in Mtb-infected individuals (TBI) and healthy donors (HD) to identify a putative host-protein signature useful for both TB diagnosis and treatment monitoring. A panel of seven human host proteins CLEC3B, SELL, IGFBP3, IP10, CD14, ECM1 and C1Q were measured in the plasma isolated from an HIV-negative prospective cohort of 37 ATB, 24 TBI and 23 HD. The protein signatures were assessed using a Luminex xMAP® to quantify the plasmatic levels in unstimulated blood of the different clinical group as well as the protein levels at baseline and at three timepoints during the 6-months ATB treatment, to compare the plasma protein levels between culture slow and fast converters that may contribute to monitor the TB treatment outcome. Protein signatures were defined using the CombiROC algorithm and multivariate models. The studied plasma host proteins showed different levels between the clinical groups and during the TB treatment. Six of the plasma proteins (CLEC3B, SELL, IGFBP3, IP10, CD14 and C1Q) showed significant differences in normalised median fluorescence intensities when comparing ATB vs HD or TBI groups while ECM1 revealed a significant difference between fast and slow sputum culture converters after 2 months following treatment (p = 0.006). The expression of a four-host protein markers (CLEC3B-ECM1-IP10-SELL) was significantly different between ATB from HD or TBI groups (respectively, p < 0.05). The expression of the same signature was significantly different between the slow vs the fast sputum culture converters after 2 months of treatment (p < 0.05). The results suggest a promising 4 host-plasma marker signature that would be associated with both TB diagnostic and treatment monitoring.
Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Humanos , Quimiocina CXCL10 , Complemento C1q , Estudos Prospectivos , Antituberculosos/uso terapêutico , Proteínas Sanguíneas , Proteínas da Matriz ExtracelularRESUMO
Tuberculosis (TB) remains one of the leading causes of death worldwide and is caused by the single infectious agent Mycobacterium tuberculosis (Mtb). Although sputum is the most common specimen for pulmonary TB detection, some other respiratory specimens, such as bronchoalveolar lavage (BAL) fluid, gastric lavage (GL), and induced sputum (IS), are also collected from patients who are unable to deliver sputum. In this study, we aimed to evaluate the diagnostic performances of different test methods for TB diagnosis using BAL fluid specimens from sputum-scarce pulmonary TB patients. In this current study, a total of 210 BAL fluid specimens were collected and subjected to culture on Lowenstein-Jensen (L-J) medium, using an N-acetyl-L-cysteine-Sodium Hydroxide decontamination and digestion method, Xpert MTB/RIF (Xpert, Cepheid, Sunnyvale, CA, USA) assay, and acid-fast bacilli (AFB) microscopy with a Ziehl-Neelsen staining method for the detection of pulmonary TB. The sensitivity and specificity of these methods were then analyzed against the composite reference standard (CRS). Additionally, the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of these assays. Among the 210 specimens, 39 (18.6%), 27 (12.8%), and 12 (5.7%) were found positive with Xpert assay, culture, and AFB microscopy, respectively. Considering the CRS, 42 (20%) were positive as the final diagnosis. The Xpert assay had a significantly higher sensitivity (92.9%, 95% CI: 80.5-98.5) compared to culture (64.3%, 95% CI: 48.0-78.4) and AFB microscopy (28.6%, 95% CI: 15.7-44.6) against the CRS. Additionally, the area under the ROC curve (AUC) for the Xpert assay, culture, and AFB microscopy accounted for 0.964, 0.821, and 0.655, respectively, when using CRS as the reference. In conclusion, our study findings demonstrated that the Xpert assay conferred a considerable diagnostic potential compared to other conventional methods for the diagnosis of pulmonary TB from BAL fluid specimens.
RESUMO
Tuberculosis (TB) is a difficult-to-treat infection because of multidrug regimen requirements based on drug susceptibility profiles and treatment observance issues. TB cure is defined by mycobacterial sterilization, technically complex to systematically assess. We hypothesized that microbiological outcome was associated with stage-specific immune changes in peripheral whole blood during TB treatment. The T-cell phenotypes of treated TB patients were prospectively characterized in a blinded fashion using mass cytometry after Mycobacterium tuberculosis (Mtb) antigen stimulation with QuantiFERON-TB Gold Plus, and then correlated to sputum culture status. At two months of treatment, cytotoxic and terminally differentiated CD8+ T-cells were under-represented and naïve CD4+ T-cells were over-represented in positive- versus negative-sputum culture patients, regardless of Mtb drug susceptibility. At treatment completion, a T-cell immune shift towards differentiated subpopulations was associated with TB cure. Overall, we identified specific T-cell profiles associated with slow sputum converters, which brings new insights in TB prognostic biomarker research designed for clinical application.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Antígenos de Bactérias , Linfócitos T CD8-Positivos , Humanos , Imunofenotipagem , Subpopulações de Linfócitos T , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológicoRESUMO
Introduction: Pregnancy triggers an alteration of the immune functions and increases the risk of developing the active tuberculosis (TB) symptoms in exposed women. The effect of pregnancy on the Mycobacterium tuberculosis-specific immune responses used for most of the TB immunodiagnostic assays is not well documented. Here we investigated the changes in the M. tuberculosis-specific IFN-γ production in age-matched pregnant and non-pregnant women according to their TB exposition status. Methods: We conducted a prospective cohort study on HIV-seronegative pregnant and non-pregnant women with compatible pulmonary TB symptoms addressed to TB healthcare facilities in Antananarivo, Madagascar. Active pulmonary TB was bacteriologically assessed with culture from sputum samples. Clinical data and blood samples were collected at inclusion and after 6 months of follow-up for each individual included. Whole blood samples were stimulated with QuantiFERON TB-Gold Plus (QFT-P) assay antigens. Plasma IFN-γ concentrations were then assessed by ELISA. Results: A total of 284 women were investigated for the study including 209 pregnant women without confirmed TB (pNTB), 24 pregnant women with bacteriologically confirmed active TB (pATB), 16 non-pregnant women with active TB (ATB), and 35 non-pregnant healthy donors (HC). At inclusion, IFN-γ responses are lower in the pregnant women compared to their age-matched non-pregnant counterparts and independently of their TB status. Among the pregnant women, higher concentrations of M. tuberculosis-specific IFN-γ were observed in those exposed to TB, but with a lower magnitude in the active TB compared to the latently infected pregnant women (p < 0.05 with TB1 and p < 0.01 with TB2). After 6 months of follow-up, the M. tuberculosis-specific IFN-γ responses return to their baseline concentrations except for the pregnant women treated for TB for which none of the QFT-P positive reversed to negative (0%, 0/10) at the end of their TB treatment. Conclusion: These results support the concept of specific immune priorities characterized by a concomitant reduction in inflammatory immunity during pregnancy and corroborate the important role of activating the M. tuberculosis-specific immune responses to control the infection when the pregnant women are exposed to the pathogen.
Assuntos
Interferon gama/imunologia , Complicações Infecciosas na Gravidez/imunologia , Tuberculose Pulmonar/imunologia , Adulto , Estudos de Coortes , Estudos Transversais , Feminino , Infecções por HIV , Humanos , Madagáscar , Mycobacterium tuberculosis , Gravidez , Estudos ProspectivosRESUMO
OBJECTIVES: Tuberculosis (TB) is the leading infectious cause of death in the world. Multi-drug resistant TB (MDR-TB) is a major public health problem as treatment is long, costly, and associated to poor outcomes. Here, we report epidemiological data on the prevalence of drug-resistant TB in Haiti. METHODS: This cross-sectional prevalence study was conducted in five health centers across Haiti. Adult, microbiologically confirmed pulmonary TB patients were included. Molecular genotyping (rpoB gene sequencing and spoligotyping) and phenotypic drug susceptibility testing were used to characterize rifampin-resistant MTB isolates detected by Xpert MTB/RIF. RESULTS: Between April 2016 and February 2018, 2,777 patients were diagnosed with pulmonary TB by Xpert MTB/RIF screening and positive MTB cultures. A total of 74 (2.7%) patients were infected by a drug-resistant (DR-TB) M. tuberculosis strain. Overall HIV prevalence was 14.1%. Patients with HIV infection were at a significantly higher risk for infection with DR-TB strains compared to pan-susceptible strains (28.4% vs. 13.7%, adjusted odds ratio 2.6, 95% confidence interval 1.5-4.4, P = 0.001). Among the detected DR-TB strains, T1 (29.3%), LAM9 (13.3%), and H3 (10.7%) were the most frequent clades. In comparison with previous spoligotypes studies with data collected in 2000-2002 and in 2008-2009 on both sensitive and resistant strains of TB in Haiti, we observed a significant increase in the prevalence of the drug-resistant MTB Spoligo-International-Types (SIT) 137 (X2 clade: 8.1% vs. 0.3% in 2000-02 and 0.9% in 2008-09, p<0.001), 5 (T1 clade: 6.8% vs 1.9 in 2000-02 and 1.7% in 2008-09, P = 0.034) and 455 (T1 clade: 5.4% vs 1.6% and 1.1%, P = 0.029). Newly detected spoligotypes (SIT 6, 7, 373, 909 and 1624) were also recorded. CONCLUSION: This study describes the genotypic and phenotypic characteristics of DR-TB strains circulating in Haiti from April 2016 to February 2018. Newly detected MTB clades harboring multi-drug resistance patterns among the Haitian population as well as the higher risk of MDR-TB infection in HIV-positive people highlights the epidemiological relevance of these surveillance data. The importance of detecting RIF-resistant patients, as proxy for MDR-TB in peripheral sites via molecular techniques, is particularly important to provide adequate patient case management, prevent the transmission of resistant strains in the community and to contribute to the surveillance of resistant strains.
Assuntos
Antituberculosos/farmacologia , Coinfecção/epidemiologia , Infecções por HIV/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Adulto , Antituberculosos/uso terapêutico , Coinfecção/diagnóstico , Coinfecção/tratamento farmacológico , Coinfecção/microbiologia , Estudos Transversais , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Haiti/epidemiologia , Humanos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Masculino , Programas de Rastreamento/estatística & dados numéricos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Prevalência , Estudos Retrospectivos , Rifampina/farmacologia , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto JovemRESUMO
There is a crucial need for non-sputum-based TB tests. Here, we evaluate the performance of RISK6, a human-blood transcriptomic signature, for TB screening, triage and treatment monitoring. RISK6 performance was also compared to that of two IGRAs: one based on RD1 antigens (QuantiFERON-TB Gold Plus, QFT-P, Qiagen) and one on recombinant M. tuberculosis HBHA expressed in Mycobacterium smegmatis (IGRA-rmsHBHA). In this multicenter prospective nested case-control study conducted in Bangladesh, Georgia, Lebanon and Madagascar, adult non-immunocompromised patients with bacteriologically confirmed active pulmonary TB (ATB), latent TB infection (LTBI) and healthy donors (HD) were enrolled. ATB patients were followed-up during and after treatment. Blood RISK6 scores were assessed using quantitative real-time PCR and evaluated by area under the receiver-operating characteristic curve (ROC AUC). RISK6 performance to discriminate ATB from HD reached an AUC of 0.94 (95% CI 0.89-0.99), with 90.9% sensitivity and 87.8% specificity, thus achieving the minimal WHO target product profile for a non-sputum-based TB screening test. Besides, RISK6 yielded an AUC of 0.93 (95% CI 0.85-1) with 90.9% sensitivity and 88.5% specificity for discriminating ATB from LTBI. Moreover, RISK6 showed higher performance (AUC 0.90, 95% CI 0.85-0.94) than IGRA-rmsHBHA (AUC 0.75, 95% CI 0.69-0.82) to differentiate TB infection stages. Finally, RISK6 signature scores significantly decreased after 2 months of TB treatment and continued to decrease gradually until the end of treatment reaching scores obtained in HD. We confirmed the performance of RISK6 signature as a triage TB test and its utility for treatment monitoring.
Assuntos
Mycobacterium tuberculosis/genética , Transcriptoma , Tuberculose/diagnóstico , Adulto , Estudos de Casos e Controles , Gerenciamento Clínico , Feminino , Humanos , Tuberculose Latente/sangue , Tuberculose Latente/diagnóstico , Tuberculose Latente/genética , Tuberculose Latente/terapia , Masculino , Mycobacterium tuberculosis/isolamento & purificação , Estudos Prospectivos , Triagem , Tuberculose/sangue , Tuberculose/genética , Tuberculose/terapia , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/terapia , Adulto JovemRESUMO
During 2 successive rainy seasons, January 2008 through May 2008 and November 2008 through March 2009, Rift Valley fever virus (RVFV) caused outbreaks in Madagascar. Human and animal infections were confirmed on the northern and southern coasts and in the central highlands. Analysis of partial sequences from RVFV strains showed that all were similar to the strains circulating in Kenya during 2006-2007. A national cross-sectional serologic survey among slaughterhouse workers at high risk showed that RVFV circulation during the 2008 outbreaks included all of the Malagasy regions and that the virus has circulated in at least 92 of Madagascar's 111 districts. To better predict and respond to RVF outbreaks in Madagascar, further epidemiologic studies are needed, such as RVFV complete genome analysis, ruminant movement mapping, and surveillance implementation.