Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 260: 119474, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35842095

RESUMO

The removal of non-brain signal from magnetic resonance imaging (MRI) data, known as skull-stripping, is an integral component of many neuroimage analysis streams. Despite their abundance, popular classical skull-stripping methods are usually tailored to images with specific acquisition properties, namely near-isotropic resolution and T1-weighted (T1w) MRI contrast, which are prevalent in research settings. As a result, existing tools tend to adapt poorly to other image types, such as stacks of thick slices acquired with fast spin-echo (FSE) MRI that are common in the clinic. While learning-based approaches for brain extraction have gained traction in recent years, these methods face a similar burden, as they are only effective for image types seen during the training procedure. To achieve robust skull-stripping across a landscape of imaging protocols, we introduce SynthStrip, a rapid, learning-based brain-extraction tool. By leveraging anatomical segmentations to generate an entirely synthetic training dataset with anatomies, intensity distributions, and artifacts that far exceed the realistic range of medical images, SynthStrip learns to successfully generalize to a variety of real acquired brain images, removing the need for training data with target contrasts. We demonstrate the efficacy of SynthStrip for a diverse set of image acquisitions and resolutions across subject populations, ranging from newborn to adult. We show substantial improvements in accuracy over popular skull-stripping baselines - all with a single trained model. Our method and labeled evaluation data are available at https://w3id.org/synthstrip.


Assuntos
Encéfalo , Crânio , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Meios de Contraste , Cabeça , Humanos , Processamento de Imagem Assistida por Computador/métodos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Crânio/diagnóstico por imagem , Crânio/patologia
2.
Neuroimage ; 244: 118610, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571161

RESUMO

A tool was developed to automatically segment several subcortical limbic structures (nucleus accumbens, basal forebrain, septal nuclei, hypothalamus without mammillary bodies, the mammillary bodies, and fornix) using only a T1-weighted MRI as input. This tool fills an unmet need as there are few, if any, publicly available tools to segment these clinically relevant structures. A U-Net with spatial, intensity, contrast, and noise augmentation was trained using 39 manually labeled MRI data sets. In general, the Dice scores, true positive rates, false discovery rates, and manual-automatic volume correlation were very good relative to comparable tools for other structures. A diverse data set of 698 subjects were segmented using the tool; evaluation of the resulting labelings showed that the tool failed in less than 1% of cases. Test-retest reliability of the tool was excellent. The automatically segmented volume of all structures except mammillary bodies showed effectiveness at detecting either clinical AD effects, age effects, or both. This tool will be publicly released with FreeSurfer (surfer.nmr.mgh.harvard.edu/fswiki/ScLimbic). Together with the other cortical and subcortical limbic segmentations, this tool will allow FreeSurfer to provide a comprehensive view of the limbic system in an automated way.


Assuntos
Aprendizado Profundo , Sistema Límbico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Prosencéfalo Basal/diagnóstico por imagem , Feminino , Fórnice/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Núcleo Accumbens/diagnóstico por imagem , Reprodutibilidade dos Testes , Núcleos Septais/diagnóstico por imagem , Adulto Jovem
3.
Magn Reson Med ; 76(3): 913-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26418189

RESUMO

PURPOSE: While MRI is enhancing our knowledge about the structure and function of the human brain, subject motion remains a problem in many clinical applications. Recently, the use of wireless radiofrequency markers with three one-dimensional (1D) navigators for prospective correction was demonstrated. This method is restricted in the range of motion that can be corrected, however, because of limited information in the 1D readouts. METHODS: Here, the limitation of techniques for disambiguating marker locations was investigated. It was shown that including more sampling directions extends the tracking range for head rotations. The efficiency of trading readout resolution for speed was explored. RESULTS: Tracking of head rotations was demonstrated from -19.2 to 34.4°, -2.7 to 10.0°, and -60.9 to 70.9° in the x-, y-, and z-directions, respectively. In the presence of excessive head motion, the deviation of marker estimates from SPM8 was reduced by 17.1% over existing three-projection methods. This was achieved by using an additional seven directions, extending the time needed for readouts by a factor of 3.3. Much of this increase may be circumvented by reducing resolution, without compromising accuracy. CONCLUSION: Including additional sampling directions extends the range in which markers can be used, for patients who move a lot. Magn Reson Med 76:913-918, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Tecnologia sem Fio/instrumentação , Algoritmos , Desenho de Equipamento , Análise de Falha de Equipamento , Marcadores Fiduciais , Movimentos da Cabeça , Humanos , Aumento da Imagem/métodos , Ondas de Rádio , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade , Transdutores
4.
ArXiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38463507

RESUMO

Skull-stripping is the removal of background and non-brain anatomical features from brain images. While many skull-stripping tools exist, few target pediatric populations. With the emergence of multi-institutional pediatric data acquisition efforts to broaden the understanding of perinatal brain development, it is essential to develop robust and well-tested tools ready for the relevant data processing. However, the broad range of neuroanatomical variation in the developing brain, combined with additional challenges such as high motion levels, as well as shoulder and chest signal in the images, leaves many adult-specific tools ill-suited for pediatric skull-stripping. Building on an existing framework for robust and accurate skull-stripping, we propose developmental SynthStrip (d-SynthStrip), a skull-stripping model tailored to pediatric images. This framework exposes networks to highly variable images synthesized from label maps. Our model substantially outperforms pediatric baselines across scan types and age cohorts. In addition, the <1-minute runtime of our tool compares favorably to the fastest baselines. We distribute our model at https://w3id.org/synthstrip.

5.
IEEE Trans Med Imaging ; PP2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857148

RESUMO

Rigid motion tracking is paramount in many medical imaging applications where movements need to be detected, corrected, or accounted for. Modern strategies rely on convolutional neural networks (CNN) and pose this problem as rigid registration. Yet, CNNs do not exploit natural symmetries in this task, as they are equivariant to translations (their outputs shift with their inputs) but not to rotations. Here we propose EquiTrack, the first method that uses recent steerable SE(3)-equivariant CNNs (E-CNN) for motion tracking. While steerable E-CNNs can extract corresponding features across different poses, testing them on noisy medical images reveals that they do not have enough learning capacity to learn noise invariance. Thus, we introduce a hybrid architecture that pairs a denoiser with an E-CNN to decouple the processing of anatomically irrelevant intensity features from the extraction of equivariant spatial features. Rigid transforms are then estimated in closed-form. EquiTrack outperforms state-of-the-art learning and optimisation methods for motion tracking in adult brain MRI and fetal MRI time series. Our code is available at https://github.com/BBillot/EquiTrack.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37692094

RESUMO

Subject motion can cause artifacts in clinical MRI, frequently necessitating repeat scans. We propose to alleviate this inefficiency by predicting artifact scores from partial multi-shot multi-slice acquisitions, which may guide the operator in aborting corrupted scans early.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37565069

RESUMO

Motion artifacts can negatively impact diagnosis, patient experience, and radiology workflow especially when a patient recall is required. Detecting motion artifacts while the patient is still in the scanner could potentially improve workflow and reduce costs by enabling immediate corrective action. We demonstrate in a clinical k-space dataset that using cross-correlation between adjacent phase-encoding lines can detect motion artifacts directly from raw k-space in multi-shot multi-slice scans. We train a split-attention residual network to examine the performance in predicting motion artifact severity. The network is trained on simulated data and tested on real clinical data.

8.
IEEE Trans Med Imaging ; 41(3): 543-558, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34587005

RESUMO

We introduce a strategy for learning image registration without acquired imaging data, producing powerful networks agnostic to contrast introduced by magnetic resonance imaging (MRI). While classical registration methods accurately estimate the spatial correspondence between images, they solve an optimization problem for every new image pair. Learning-based techniques are fast at test time but limited to registering images with contrasts and geometric content similar to those seen during training. We propose to remove this dependency on training data by leveraging a generative strategy for diverse synthetic label maps and images that exposes networks to a wide range of variability, forcing them to learn more invariant features. This approach results in powerful networks that accurately generalize to a broad array of MRI contrasts. We present extensive experiments with a focus on 3D neuroimaging, showing that this strategy enables robust and accurate registration of arbitrary MRI contrasts even if the target contrast is not seen by the networks during training. We demonstrate registration accuracy surpassing the state of the art both within and across contrasts, using a single model. Critically, training on arbitrary shapes synthesized from noise distributions results in competitive performance, removing the dependency on acquired data of any kind. Additionally, since anatomical label maps are often available for the anatomy of interest, we show that synthesizing images from these dramatically boosts performance, while still avoiding the need for real intensity images. Our code is available at doic https://w3id.org/synthmorph.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem
9.
Artigo em Inglês | MEDLINE | ID: mdl-36147449

RESUMO

We introduce HyperMorph, a framework that facilitates efficient hyperparameter tuning in learning-based deformable image registration. Classical registration algorithms perform an iterative pair-wise optimization to compute a deformation field that aligns two images. Recent learning-based approaches leverage large image datasets to learn a function that rapidly estimates a deformation for a given image pair. In both strategies, the accuracy of the resulting spatial correspondences is strongly influenced by the choice of certain hyperparameter values. However, an effective hyperparameter search consumes substantial time and human effort as it often involves training multiple models for different fixed hyperparameter values and may lead to suboptimal registration. We propose an amortized hyperparameter learning strategy to alleviate this burden by learning the impact of hyperparameters on deformation fields. We design a meta network, or hypernetwork, that predicts the parameters of a registration network for input hyperparameters, thereby comprising a single model that generates the optimal deformation field corresponding to given hyperparameter values. This strategy enables fast, high-resolution hyperparameter search at test-time, reducing the inefficiency of traditional approaches while increasing flexibility. We also demonstrate additional benefits of HyperMorph, including enhanced robustness to model initialization and the ability to rapidly identify optimal hyperparameter values specific to a dataset, image contrast, task, or even anatomical region, all without the need to retrain models. We make our code publicly available at http://hypermorph.voxelmorph.net.

10.
Nat Neurosci ; 25(8): 1014-1019, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35856094

RESUMO

To understand the architecture of human language, it is critical to examine diverse languages; however, most cognitive neuroscience research has focused on only a handful of primarily Indo-European languages. Here we report an investigation of the fronto-temporo-parietal language network across 45 languages and establish the robustness to cross-linguistic variation of its topography and key functional properties, including left-lateralization, strong functional integration among its brain regions and functional selectivity for language processing.


Assuntos
Idioma , Linguística , Encéfalo , Humanos
11.
Sci Data ; 9(1): 529, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038572

RESUMO

Two analytic traditions characterize fMRI language research. One relies on averaging activations across individuals. This approach has limitations: because of inter-individual variability in the locations of language areas, any given voxel/vertex in a common brain space is part of the language network in some individuals but in others, may belong to a distinct network. An alternative approach relies on identifying language areas in each individual using a functional 'localizer'. Because of its greater sensitivity, functional resolution, and interpretability, functional localization is gaining popularity, but it is not always feasible, and cannot be applied retroactively to past studies. To bridge these disjoint approaches, we created a probabilistic functional atlas using fMRI data for an extensively validated language localizer in 806 individuals. This atlas enables estimating the probability that any given location in a common space belongs to the language network, and thus can help interpret group-level activation peaks and lesion locations, or select voxels/electrodes for analysis. More meaningful comparisons of findings across studies should increase robustness and replicability in language research.


Assuntos
Encéfalo , Idioma , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Humanos
12.
Proc IEEE Int Symp Biomed Imaging ; 2023: 899-903, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38213549

RESUMO

We introduce a strategy for learning image registration without acquired imaging data, producing powerful networks agnostic to magnetic resonance imaging (MRI) contrast. While classical methods accurately estimate the spatial correspondence between images, they solve an optimization problem for every new image pair. Learning methods are fast at test time but limited to images with contrasts and geometric content similar to those seen during training. We propose to remove this dependency using a generative strategy that exposes networks to a wide range of images synthesized from segmentations during training, forcing them to generalize across contrasts. We show that networks trained within this framework generalize to a broad array of unseen MRI contrasts and surpass classical state-of-the-art brain registration accuracy by up to 12.4 Dice points for a variety of tested contrast combinations. Critically, training on arbitrary shapes synthesized from noise distributions results in competitive performance, removing the dependency on acquired data of any kind. Additionally, since anatomical label maps are often available for the anatomy of interest, we show that synthesizing images from these dramatically boosts performance, while still avoiding the need for real intensity images during training.

13.
Int J Imaging Syst Technol ; 31(3): 1136-1154, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34421216

RESUMO

In fetal-brain MRI, head-pose changes between prescription and acquisition present a challenge to obtaining the standard sagittal, coronal and axial views essential to clinical assessment. As motion limits acquisitions to thick slices that preclude retrospective resampling, technologists repeat ~55-second stack-of-slices scans (HASTE) with incrementally reoriented field of view numerous times, deducing the head pose from previous stacks. To address this inefficient workflow, we propose a robust head-pose detection algorithm using full-uterus scout scans (EPI) which take ~5 seconds to acquire. Our ~2-second procedure automatically locates the fetal brain and eyes, which we derive from maximally stable extremal regions (MSERs). The success rate of the method exceeds 94% in the third trimester, outperforming a trained technologist by up to 20%. The pipeline may be used to automatically orient the anatomical sequence, removing the need to estimate the head pose from 2D views and reducing delays during which motion can occur.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37576741

RESUMO

We demonstrate that non-rigid deformations of, e.g., the mouth introduce bias in the vNav-based detection of brain motion, which causes artifacts. We present real-time brain extraction for vNavs and show that these artifacts can be removed by brain-masked registration.

16.
Magn Reson Imaging ; 33(3): 346-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25485789

RESUMO

Functional magnetic resonance imaging (fMRI) can be seriously impaired by patient motion. The purpose of this study was to characterize the typical motion in a clinical population of patients in disorders of consciousness and compare the performance of retrospective correction with rigid-body realignment as implemented in widely used software packages. 63 subjects were scanned with an fMRI visual checkerboard paradigm using a 3T scanner. Time series were corrected for motion, and the resulting transformations were used to calculate a motion score. SPM, FSL, AFNI and AIR were evaluated by comparing the motion obtained by re-running the tool on the corrected data. A publicly available sample fMRI dataset was modified with the motion detected in each patient with each tool. The performance of each tool was measured by comparing the number of supra-threshold voxels after standard fMRI analysis, both in the sample dataset and in simulated fMRI data. We assessed the effect of user-changeable parameters on motion correction in SPM. We found the equivalent motion in the patient population to be 1.4mm on average. There was no significant difference in performance between SPM, FSL and AFNI. AIR was considerably worse, and took more time to run. We found that in SPM the quality factor and interpolation method have no effect on the cluster size, while higher separation and smoothing reduce it. We showed that the main packages SPM, FSL and AFNI are equally suitable for retrospective motion correction of fMRI time series. We show that typically only 80% of activated voxels are recovered by retrospective motion correction.


Assuntos
Transtornos da Consciência/fisiopatologia , Estado de Consciência/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Artefatos , Análise por Conglomerados , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Reprodutibilidade dos Testes , Estudos Retrospectivos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA