Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(5): 1002-1021.e10, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33761330

RESUMO

Arthritis typically involves recurrence and progressive worsening at specific predilection sites, but the checkpoints between remission and persistence remain unknown. Here, we defined the molecular and cellular mechanisms of this inflammation-mediated tissue priming. Re-exposure to inflammatory stimuli caused aggravated arthritis in rodent models. Tissue priming developed locally and independently of adaptive immunity. Repeatedly stimulated primed synovial fibroblasts (SFs) exhibited enhanced metabolic activity inducing functional changes with intensified migration, invasiveness and osteoclastogenesis. Meanwhile, human SF from patients with established arthritis displayed a similar primed phenotype. Transcriptomic and epigenomic analyses as well as genetic and pharmacological targeting demonstrated that inflammatory tissue priming relies on intracellular complement C3- and C3a receptor-activation and downstream mammalian target of rapamycin- and hypoxia-inducible factor 1α-mediated metabolic SF invigoration that prevents activation-induced senescence, enhances NLRP3 inflammasome activity, and in consequence sensitizes tissue for inflammation. Our study suggests possibilities for therapeutic intervention abrogating tissue priming without immunosuppression.


Assuntos
Proteínas do Sistema Complemento/imunologia , Fibroblastos/imunologia , Inflamação/imunologia , Membrana Sinovial/imunologia , Imunidade Adaptativa/imunologia , Animais , Artrite Reumatoide/imunologia , Linhagem Celular , Cães , Humanos , Mediadores da Inflamação/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos Wistar , Transdução de Sinais/imunologia
2.
Immunity ; 51(3): 443-450.e4, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31422870

RESUMO

The presence of gallstones (cholelithiasis) is a highly prevalent and severe disease and one of the leading causes of hospital admissions worldwide. Due to its substantial health impact, we investigated the biological mechanisms that lead to the formation and growth of gallstones. We show that gallstone assembly essentially requires neutrophil extracellular traps (NETs). We found consistent evidence for the presence of NETs in human and murine gallstones and describe an immune-mediated process requiring activation of the innate immune system for the formation and growth of gallstones. Targeting NET formation via inhibition of peptidyl arginine deiminase type 4 or abrogation of reactive oxygen species (ROS) production, as well as damping of neutrophils by metoprolol, effectively inhibit gallstone formation in vivo. Our results show that after the physicochemical process of crystal formation, NETs foster their assembly into larger aggregates and finally gallstones. These insights provide a feasible therapeutic concept to prevent cholelithiasis in patients at risk.


Assuntos
Armadilhas Extracelulares/imunologia , Cálculos Biliares/imunologia , Neutrófilos/imunologia , Animais , Feminino , Humanos , Imunidade Inata/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/imunologia
3.
Semin Immunol ; 60: 101644, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35902311

RESUMO

Hyperactivated local tissue is a cardinal feature of immune-mediated inflammatory diseases of various organs such as the joints, the gut, the skin, or the lungs. Tissue-resident structural and stromal cells, which get primed during repeated or long-lasting bouts of inflammation form the basis of this sensitization of the tissue. During priming, cells change their metabolism to make them fit for the heightened energy demands that occur during persistent inflammation. Epigenetic changes and, curiously, an activation of intracellularly expressed parts of the complement system drive this metabolic invigoration and enable tissue-resident cells and infiltrating immune cells to employ an arsenal of inflammatory functions, including activation of inflammasomes. Here we provide a current overview on complement activation and inflammatory transformation in tissue-occupying cells, focusing on fibroblasts during arthritis, and illustrate ways how therapeutics directed at complement C3 could potentially target the complosome to unprime cells in the tissue and induce long-lasting abatement of inflammation.


Assuntos
Ativação do Complemento , Inflamação , Humanos , Fibroblastos
4.
Ann Rheum Dis ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702177

RESUMO

Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.

5.
FASEB J ; 33(1): 1401-1414, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30130433

RESUMO

Papillon-Lefèvre syndrome (PLS) is characterized by nonfunctional neutrophil serine proteases (NSPs) and fulminant periodontal inflammation of unknown cause. Here we investigated neutrophil extracellular trap (NET)-associated aggregation and cytokine/chemokine-release/degradation by normal and NSP-deficient human and mouse granulocytes. Stimulated with solid or soluble NET inducers, normal neutrophils formed aggregates and both released and degraded cytokines/chemokines. With increasing cell density, proteolytic degradation outweighed release. Maximum output of cytokines/chemokines occurred mostly at densities between 2 × 107 and 4 × 107 neutrophils/cm3. Assessment of neutrophil density in vivo showed that these concentrations are surpassed during inflammation. Association with aggregated NETs conferred protection of neutrophil elastase against α1-antitrypsin. In contrast, eosinophils did not influence cytokine/chemokine concentrations. The proteolytic degradation of inflammatory mediators seen in NETs was abrogated in Papillon-Lefèvre syndrome (PLS) neutrophils. In summary, neutrophil-driven proteolysis of inflammatory mediators works as a built-in safeguard for inflammation. The absence of this negative feedback mechanism might be responsible for the nonresolving periodontitis seen in PLS.-Hahn, J., Schauer, C., Czegley, C., Kling, L., Petru, L., Schmid, B., Weidner, D., Reinwald, C., Biermann, M. H. C., Blunder, S., Ernst, J., Lesner, A., Bäuerle, T., Palmisano, R., Christiansen, S., Herrmann, M., Bozec, A., Gruber, R., Schett, G., Hoffmann, M. H. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases.


Assuntos
Quimiocinas/metabolismo , Citocinas/metabolismo , Armadilhas Extracelulares/metabolismo , Inflamação/prevenção & controle , Neutrófilos/metabolismo , Inibidores de Proteases/metabolismo , Adolescente , Adulto , Animais , Humanos , Mediadores da Inflamação/metabolismo , Ionomicina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NADPH Oxidases/genética , Neutrófilos/efeitos dos fármacos , Periodontite/metabolismo , Proteólise , Acetato de Tetradecanoilforbol/farmacologia , Ácido Úrico/farmacologia
6.
Biochem Soc Trans ; 47(6): 1921-1930, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31754705

RESUMO

While there are numerous studies showing that neutrophil extracellular traps (NETs) contribute to autoimmune inflammation and cause bystander tissue injury, human individuals with genetic impairments in NET formation curiously often suffer from exacerbated autoimmune diseases and/or chronic inflammatory conditions. These findings are confirmed in some mouse models of systemic lupus erythematosus (SLE) and gouty arthritis, where an absence of neutrophils or impairment of NET formation leads to exacerbation of autoimmunity and chronic inflammation. Thus, aside from their role as archetypical pro-inflammatory cells, neutrophils in general, and NETs in particular, can also interrupt the self-amplifying loop of cell activation and cell recruitment that characterizes neutrophilic inflammation. Here, we review the current state-of-the-science regarding anti-inflammatory and immune-regulatory action of NETs. We give an overview about the mechanistic involvement of NET-associated neutrophil serine proteases and suggest how tailored induction of NET formation could be exploited for the treatment of chronic autoinflammatory disorders.


Assuntos
Armadilhas Extracelulares/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Animais , Doença Crônica , Humanos , Inflamação/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Neutrófilos/imunologia
7.
Mucosal Immunol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901763

RESUMO

T lymphocytes and myeloid cells express the immunoglobulin-like glycoprotein cluster of differentiation (CD)101, notably in the gut. Here, we investigated the cell-specific functions of CD101 during dextran sulfate sodium (DSS)-induced colitis and Salmonella enterica Typhimurium infection. Similar to conventional CD101-/- mice, animals with a regulatory T cell-specific Cd101 deletion developed more severe intestinal pathology than littermate controls in both models. While the accumulation of T helper 1 cytokines in a CD101-deficient environment entertained DSS-induced colitis, it impeded the replication of Salmonella as revealed by studying CD101-/- x interferon-g-/- mice. Moreover, CD101-expressing neutrophils were capable to restrain Salmonella infection in vitro and in vivo. Both cell-intrinsic and -extrinsic mechanisms of CD101 contributed to the control of bacterial growth and spreading. The CD101-dependent containment of Salmonella infection required the expression of Irg-1 and Nox2 and the production of itaconate and reactive oxygen species. The level of intestinal microbial antigens in the sera of inflammatory bowel disease patients correlated inversely with the expression of CD101 on myeloid cells, which is in line with the suppression of CD101 seen in mice following DSS application or Salmonella infection. Thus, depending on the experimental or clinical setting, CD101 helps to limit inflammatory insults or bacterial infections due to cell type-specific modulation of metabolic, immune-regulatory, and anti-microbial pathways.

8.
Ann Rheum Dis ; 72(7): 1239-48, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23172753

RESUMO

BACKGROUND: In rheumatoid arthritis (RA), neutrophil granulocytes fuel inflammation and damage tissue in the joint by releasing cytotoxic agents, antimicrobial peptides, proteases and other inflammatory mediators. The human cathelicidin LL-37 has recently been implicated in the development of systemic lupus erythematosus and psoriasis. OBJECTIVE: To elucidate if antimicrobial peptides (AMPs) contribute to the pathogenesis of arthritis. METHODS: Expression of LL-37 was determined in synovial membranes from patients with arthritis and control subjects. Expression of the rat cathelicidin rCRAMP and defensins was characterised in joints, blood and secondary lymphoid organs during pristane-induced arthritis (PIA) in rats and in a transfer model of PIA induced by CD4 T cells. Serum samples of rats with arthritis were tested for IgG and IgM autoantibodies against rCRAMP by immunoblot and for interferon (IFNα) by ELISA. RESULTS: Cathelicidins are strongly upregulated in RA synovial membranes and in joints from rats with arthritis as compared with healthy joints. Expression was most prominent in neutrophil granulocytes and macrophages/osteoclasts. Cathelicidin expression is also upregulated in the blood and spleen of pristane-injected rats, with strongest expression detected in activated CD62L- cells coexpressing granulocyte and monocyte markers. Pristane injection caused accumulation of low-density granulocytes in the blood. After pristane injection, the increased expression of rCRAMP coincided with higher levels of cell death, raised levels of interferon (IFN)α and development of autoantibodies. CONCLUSIONS: Our results show strong upregulation of cathelicidins and ß-defensins coinciding with pathological events of arthritis. Higher expression and release of AMPs might contribute to development and/or maintenance of disease by systemic or local mechanisms.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Catelicidinas/metabolismo , Defensinas/metabolismo , Animais , Artrite Experimental/etiologia , Autoanticorpos/imunologia , Estudos de Casos e Controles , Catelicidinas/sangue , Humanos , Interferon-alfa/imunologia , Neutrófilos/metabolismo , Osteoclastos/metabolismo , Ratos , Membrana Sinovial/metabolismo , Regulação para Cima
9.
Cells ; 12(8)2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37190058

RESUMO

Bromodomain- and extra-terminal domain (BET) proteins are epigenetic reader proteins that regulate transcription of their target genes by binding to acetylated histone side chains. Small molecule inhibitors, such as I-BET151, have anti-inflammatory properties in fibroblast-like synoviocytes (FLS) and in animal models of arthritis. Here, we investigated whether BET inhibition can also affect the levels of histone modifications, a novel mechanism underlying BET protein inhibition. On the one hand, FLSs were treated with I-BET151 (1 µM) for 24 h in absence and presence of TNF. On the other hand, FLSs were washed with PBS after 48 h of I-BET151 treatment, and the effects were measured 5 days after I-BET151 treatment or after an additional 24 h stimulation with TNF (5 d + 24 h). Mass spectrometry analysis indicated that I-BET151 induced profound changes in histone modifications, with a global reduction in acetylation on different histone side chains 5 days after treatment. We confirmed changes on acetylated histone side chains in independent samples by Western blotting. I-BET151 treatment reduced mean TNF-induced levels of total acetylated histone 3 (acH3), H3K18ac, and H3K27ac. In line with these changes, the TNF-induced expression of BET protein target genes was suppressed 5 d after I-BET151 treatment. Our data indicate that BET inhibitors not only prevent the reading of acetylated histones but directly influence overall chromatin organization, in particular after stimulation with TNF.


Assuntos
Cromatina , Sinoviócitos , Animais , Cromatina/metabolismo , Histonas/metabolismo , Regulação da Expressão Gênica , Sinoviócitos/metabolismo , Fibroblastos/metabolismo
10.
Front Immunol ; 14: 1174537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600805

RESUMO

Introduction: Typical Western diet, rich in salt, contributes to autoimmune disease development. However, conflicting reports exist about the effect of salt on neutrophil effector functions, also in the context of arthritis. Methods: We investigated the effect of sodium chloride (NaCl) on neutrophil viability and functions in vitro, and in vivo employing the murine K/BxN-serum transfer arthritis (STA) model. Results and discussion: The effects of NaCl and external reactive oxygen species (H2O2) were further examined on osteoclasts in vitro. Hypertonic sodium-rich media caused primary/secondary cell necrosis, altered the nuclear morphology, inhibited phagocytosis, degranulation, myeloperoxidase (MPO) peroxidation activity and neutrophil extracellular trap (NET) formation, while increasing total ROS production, mitochondrial ROS production, and neutrophil elastase (NE) activity. High salt diet (HSD) aggravated arthritis by increasing inflammation, bone erosion, and osteoclast differentiation, accompanied by increased NE expression and activity. Osteoclast differentiation was decreased with 25 mM NaCl or 100 nM H2O2 addition to isotonic media. In contrast to NaCl, external H2O2 had pro-resorptive effects in vitro. We postulate that in arthritis under HSD, increased bone erosion can be attributed to an enhanced oxidative milieu maintained by infiltrating neutrophils, rather than a direct effect of NaCl.


Assuntos
Artrite , Sódio , Animais , Camundongos , Cloreto de Sódio/farmacologia , Neutrófilos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Estresse Oxidativo , Cloreto de Sódio na Dieta
11.
J Exp Med ; 220(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36976180

RESUMO

Clodronate liposomes (Clo-Lip) have been widely used to deplete mononuclear phagocytes (MoPh) to study the function of these cells in vivo. Here, we revisited the effects of Clo-Lip together with genetic models of MoPh deficiency, revealing that Clo-Lip exert their anti-inflammatory effects independent of MoPh. Notably, not only MoPh but also polymorphonuclear neutrophils (PMN) ingested Clo-Lip in vivo, which resulted in their functional arrest. Adoptive transfer of PMN, but not of MoPh, reversed the anti-inflammatory effects of Clo-Lip treatment, indicating that stunning of PMN rather than depletion of MoPh accounts for the anti-inflammatory effects of Clo-Lip in vivo. Our data highlight the need for a critical revision of the current literature on the role of MoPh in inflammation.


Assuntos
Ácido Clodrônico , Lipossomos , Humanos , Ácido Clodrônico/farmacologia , Neutrófilos , Inflamação , Anti-Inflamatórios/farmacologia
12.
Arthritis Rheumatol ; 75(4): 517-532, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36245290

RESUMO

OBJECTIVE: We have recently shown that priming of synovial fibroblasts (SFs) drives arthritis flares. Pathogenic priming of SFs is essentially mediated by epigenetic reprogramming. Bromodomain and extraterminal motif (BET) proteins translate epigenetic changes into transcription. Here, we used a BET inhibitor (I-BET151) to target inflammatory tissue priming and to reduce flare severity in a murine experimental arthritis model. METHODS: BALB/c mice were treated by intraperitoneal injection or by local injection in the paw with I-BET151, which blocks the interaction of BET proteins with acetylated histones. We assessed the effects of I-BET151 on acute arthritis and/or inflammatory tissue priming in a model of repeated injections of monosodium urate crystals or zymosan into the mouse paw. I-BET151 was given before arthritis induction, at peak inflammation, or after healing of the first arthritis bout. We performed transcriptomic (RNA-Seq), epigenomic (ATAC-Seq), and functional (invasion, cytokine production, migration, senescence, metabolic flux) analyses of murine and human SFs treated with I-BET151 in vitro or in vivo. RESULTS: Systemic I-BET151 administration did not affect acute inflammation but abolished inflammatory tissue priming and diminished flare severity in both preventive and therapeutic treatment settings. I-BET151 was also effective when applied locally in the joint. BET inhibition also inhibited osteoclast differentiation, while macrophage activation in the joint was not affected. Flare reduction after BET inhibition was mediated, at least in part, by rolling back the primed transcriptional, metabolic, and pathogenic phenotype of SFs. CONCLUSION: Inflammatory tissue priming is dependent on transcriptional regulation by BET proteins, making them promising therapeutic targets for prevention of arthritis flares in previously affected joints.


Assuntos
Artrite , Proteínas Nucleares , Camundongos , Humanos , Animais , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Exacerbação dos Sintomas , Artrite/tratamento farmacológico , Inflamação
13.
Curr Opin Immunol ; 74: 92-99, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34847474

RESUMO

In the last fifteen years it has become apparent that tissue-resident mesenchymal cells such as fibroblasts, which are the structural elements of all organs, play a cardinal role in the pathology of immune-mediated inflammatory diseases. We now know that all fibroblasts originate from universal pan-organ cellular ancestors and that they are diversified into more specific subsets according to the functional needs of their home tissue-and its activation state. In arthritis, a plethora of activated joint-resident and migrating fibroblast types have been recently described that are central for pathogenesis and persistence of inflammatory joint-disease. Here we provide a current overview on the multiple inflammatory and immune-related functions of fibroblasts and how they could be curbed to induce long-lasting abatement of disease.


Assuntos
Fibroblastos , Células Estromais , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos
14.
J Autoimmun ; 36(3-4): 288-300, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21439786

RESUMO

Autoimmune responses to heterogeneous nuclear ribonucleproteins (hnRNP) occur in many systemic autoimmune diseases, particularly in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus. In RA, humoral and/or cellular autoimmunity to hnRNP-A2/B1 is the most prominent anti-nuclear reactivity, being detectable in more than 50% of patients. However, its pathogenic role has not been fully elucidated yet. Here, we report that splenocytes from rats with pristane-induced arthritis transfer disease after in vitro restimulation with hnRNP-A/B antigens. Remarkably, disease transfer can be blocked by nuclease treatment of hnRNPs and is also achieved with splenocytes stimulated with hnRNP-A/B associated DNA or RNA oligonucleotides (ON) alone. Induction of proinflammatory cytokines in splenocytes stimulated with hnRNP-A/Bs or ONs involves Toll-like receptors (TLR) 7 and 9 but not TLR3. Furthermore, although T cells are the main mediators of disease transfer they require restimulation with TLR-activated antigen-presenting cells such as macrophages in order to become arthritogenic. Thus, the autoantigenic properties of hnRNPs appear to be mediated by their associated nucleic acids binding to TLR7 and 9. Our data explain the specific selection of hnRNP-A2/B1 as autoantigen in RA and reveal the requirement of interaction between innate and adaptive immunity to initiate and drive inflammation in autoimmune arthritis.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Artrite Reumatoide/etiologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/imunologia , Linfócitos T/imunologia , Animais , Humanos , Ratos , Terpenos/toxicidade , Receptor 7 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia
15.
Nutrients ; 13(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068191

RESUMO

Short-chain fatty acids are gut-bacteria-derived metabolites that execute important regulatory functions on adaptive immune responses, yet their influence on inflammation driven by innate immunity remains understudied. Here, we show that propionate treatment in drinking water or upon local application into the joint reduced experimental arthritis and lowered inflammatory tissue priming mediated by synovial fibroblasts. On a cellular level, incubation of synovial fibroblasts with propionate or a physiological mixture of short-chain fatty acids interfered with production of inflammatory mediators and migration and induced immune-regulatory fibroblast senescence. Our study suggests that propionate mediates its alleviating effect on arthritis by direct abrogation of local arthritogenic fibroblast function.


Assuntos
Artrite Experimental/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Propionatos/uso terapêutico , Envelhecimento/efeitos dos fármacos , Animais , Artrite Experimental/patologia , Feminino , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Líquido Sinovial/citologia
16.
Cell Mol Immunol ; 18(6): 1528-1544, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32203195

RESUMO

Excessive release of neutrophil extracellular traps (NETs) is associated with disease severity and contributes to tissue injury, followed by severe organ damage. Pharmacological or genetic inhibition of NET release reduces pathology in multiple inflammatory disease models, indicating that NETs are potential therapeutic targets. Here, we demonstrate using a preclinical basket approach that our therapeutic anti-citrullinated protein antibody (tACPA) has broad therapeutic potential. Treatment with tACPA prevents disease symptoms in various mouse models with plausible NET-mediated pathology, including inflammatory arthritis (IA), pulmonary fibrosis, inflammatory bowel disease and sepsis. We show that citrulline residues in the N-termini of histones 2A and 4 are specific targets for therapeutic intervention, whereas antibodies against other N-terminal post-translational histone modifications have no therapeutic effects. Because citrullinated histones are generated during NET release, we investigated the ability of tACPA to inhibit NET formation. tACPA suppressed NET release from human neutrophils triggered with physiologically relevant human disease-related stimuli. Moreover, tACPA diminished NET release and potentially initiated NET uptake by macrophages in vivo, which was associated with reduced tissue damage in the joints of a chronic arthritis mouse model of IA. To our knowledge, we are the first to describe an antibody with NET-inhibiting properties and thereby propose tACPA as a drug candidate for NET-mediated inflammatory diseases, as it eliminates the noxious triggers that lead to continued inflammation and tissue damage in a multidimensional manner.


Assuntos
Anticorpos Antiproteína Citrulinada/uso terapêutico , Armadilhas Extracelulares/metabolismo , Inflamação/tratamento farmacológico , Neutrófilos/patologia , Animais , Anticorpos Antiproteína Citrulinada/farmacologia , Artrite Experimental/patologia , Bleomicina , Osso e Ossos/patologia , Cartilagem/patologia , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Progressão da Doença , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Inflamação/patologia , Lipopolissacarídeos , Macrófagos/patologia , Masculino , Camundongos , Modelos Biológicos , Infiltração de Neutrófilos , Neutrófilos/efeitos dos fármacos , Fagocitose , Fibrose Pulmonar/patologia
17.
J Autoimmun ; 34(3): J178-206, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20031372

RESUMO

Autoimmunity to ubiquitously expressed macromolecular nucleic acid-protein complexes such as the nucleosome or the spliceosome is a characteristic feature of systemic autoimmune diseases. Disease-specificity and/or association with clinical features of some of these autoimmune responses suggest pathogenic involvement which, however, has been proven in only a few cases so far. Although the mechanisms leading to autoimmunity against nucleic acid-containing complexes are still far from being fully understood, there is increasing experimental evidence that the nucleic acid component may act as a co-stimulator or adjuvans via activation of nucleic acid-binding receptor systems such as Toll-like receptors in antigen-presenting cells. Dysregulated apoptosis and inappropriate stimulation of nucleic acid-sensing receptors may lead to loss of tolerance against the protein components of such complexes, activation of autoreactive T cells and formation of autoantibodies. This has been demonstrated to occur in systemic lupus erythematosus and seems to represent a general mechanism that may be crucial for the development of systemic autoimmune diseases. This review provides a comprehensive overview of the most thoroughly-characterized nucleic acid-associated autoantigens, describing their structure and biological function, as well as the nature and pathogenic importance of the reactivities directed against them. Furthermore, recent advances in immunotherapy such as antigen-specific approaches targeted at nucleic acid-binding antigens are discussed.


Assuntos
Autoantígenos/imunologia , Doenças Autoimunes/imunologia , Nucleoproteínas/imunologia , Nucleossomos/imunologia , Spliceossomos/imunologia , Animais , Autoantígenos/uso terapêutico , Doenças Autoimunes/terapia , Humanos , Imunoterapia/tendências , Nucleoproteínas/uso terapêutico , Nucleossomos/genética , Nucleossomos/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo
18.
Redox Biol ; 26: 101279, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31349119

RESUMO

The phagocyte NADPH oxidase (the NOX2 complex) generates superoxide, the precursor to reactive oxygen species (ROS). ROS possess both antimicrobial and immunoregulatory function. Inactivating mutations in alleles of the NOX2 complex cause chronic granulomatous disease (CGD), characterized by an enhanced susceptibility to infections and autoimmune diseases such as Systemic lupus erythematosus (SLE). The latter is characterized by insufficient removal of dead cells, resulting in an autoimmune response against components of the cell's nucleus when non-cleared apoptotic cells lose their membrane integrity and present autoantigenic molecules in an inflammatory context. Here we aimed to shed light on the role of the NOX2 complex in handling of secondary necrotic cells (SNECs) and associated consequences for inflammation and autoimmunity during lupus. We show that individuals with SLE and CGD display accumulation of SNECs in blood monocytes and neutrophils. In a CGD phenotypic mouse strain (Ncf1** mice) build-up of SNECs in Ly6CHI blood monocytes was connected with a delayed degradation of the phagosomal cargo and accompanied by production of inflammatory mediators. Treatment with H2O2 or activators of ROS-formation reconstituted phagosomal abundance of SNECs to normal levels. Induction of experimental lupus further induced increased antibody-dependent uptake of SNECs into neutrophils. Lupus-primed Ncf1** neutrophils took up more SNECs than wild type neutrophils, whereas SNEC-accumulation in regulatory Ly6C-/LO monocytes was lower in Ncf1**mice. We deduce that the inflammatory rerouting of immune-stimulatory necrotic material into inflammatory phagocyte subsets contributes to the connection between low ROS production by the NOX2 complex and SLE.


Assuntos
NADPH Oxidase 2/metabolismo , Fagócitos/metabolismo , Animais , Autoanticorpos/imunologia , Citocinas/metabolismo , Concentração de Íons de Hidrogênio , Mediadores da Inflamação/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , NADPH Oxidase 2/genética , Necrose/genética , Necrose/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagócitos/imunologia , Fagocitose/genética , Fagocitose/imunologia , Fagossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de IgG/metabolismo
19.
Cell Death Differ ; 26(3): 395-408, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30622307

RESUMO

Since the discovery and definition of neutrophil extracellular traps (NETs) 14 years ago, numerous characteristics and physiological functions of NETs have been uncovered. Nowadays, the field continues to expand and novel mechanisms that orchestrate formation of NETs, their previously unknown properties, and novel implications in disease continue to emerge. The abundance of available data has also led to some confusion in the NET research community due to contradictory results and divergent scientific concepts, such as pro- and anti-inflammatory roles in pathologic conditions, demarcation from other forms of cell death, or the origin of the DNA that forms the NET scaffold. Here, we present prevailing concepts and state of the science in NET-related research and elaborate on open questions and areas of dispute.


Assuntos
Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Humanos
20.
Free Radic Biol Med ; 125: 62-71, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29550327

RESUMO

Reactive oxygen species (ROS) are created in cells during oxidative phosphorylation by the respiratory chain in the mitochondria or by the family of NADPH oxidase (NOX) complexes. The first discovered and most studied of these complexes, NOX2, mediates the oxidative burst in phagocytes. ROS generated by NOX2 are dreadful weapons: while being essential to kill ingested pathogens they can also cause degenerative changes on tissue if production and release are not balanced by sufficient detoxification. In the last fifteen years evidence has been accumulating that ROS are also integral signaling molecules and are important for regulating autoimmunity and immune-mediated inflammatory diseases. It seems that an accurate redox balance is necessary to sustain an immune state that both prevents the development of overt autoimmunity (the bright side of ROS) and minimizes collateral tissue damage (the dark side of ROS). Herein, we review studies from rodent models of arthritis, lupus, and neurodegenerative diseases that show that low NOX2-derived ROS production is linked to disease and elaborate on the underlying cellular and molecular mechanisms and the translation of these results to disease in humans.


Assuntos
Doenças Autoimunes/fisiopatologia , Modelos Animais de Doenças , Inflamação/fisiopatologia , NADPH Oxidases/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA