Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(5): e17299, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700905

RESUMO

While climate change has been shown to impact several life-history traits of wild-living animal populations, little is known about its effects on dispersal and connectivity. Here, we capitalize on the highly variable flooding regime of the Okavango Delta to investigate the impacts of changing environmental conditions on the dispersal and connectivity of the endangered African wild dog (Lycaon pictus). Based on remote sensed flood extents observed over 20 years, we derive two extreme flood scenarios: a minimum and a maximum flood extent, representative of very dry and very wet environmental periods. These conditions are akin to those anticipated under increased climatic variability, as it is expected under climate change. Using a movement model parameterized with GPS data from dispersing individuals, we simulate 12,000 individual dispersal trajectories across the ecosystem under both scenarios and investigate patterns of connectivity. Across the entire ecosystem, surface water coverage during maximum flood extent reduces dispersal success (i.e., the propensity of individuals to disperse between adjacent subpopulations) by 12% and increases dispersal durations by 17%. Locally, however, dispersal success diminishes by as much as 78%. Depending on the flood extent, alternative dispersal corridors emerge, some of which in the immediate vicinity of human-dominated landscapes. Notably, under maximum flood extent, the number of dispersing trajectories moving into human-dominated landscapes decreases by 41% at the Okavango Delta's inflow, but increases by 126% at the Delta's distal end. This may drive the amplification of human-wildlife conflict. While predicting the impacts of climate change on environmental conditions on the ground remains challenging, our results highlight that environmental change may have significant consequences for dispersal patterns and connectivity, and ultimately, population viability. Acknowledging and anticipating such impacts will be key to effective conservation strategies and to preserve vital dispersal corridors in light of climate change and other human-related landscape alterations.


Assuntos
Distribuição Animal , Mudança Climática , Ecossistema , Inundações , Animais , Canidae/fisiologia , Espécies em Perigo de Extinção
2.
Neuroimage ; 283: 120412, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858907

RESUMO

BACKGROUND: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. METHODS: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. RESULTS: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. CONCLUSION: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Reprodutibilidade dos Testes , Big Data , Neuroimagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
3.
PLoS Comput Biol ; 18(1): e1009775, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041645

RESUMO

Populations of cortical neurons respond to common input within a millisecond. Morphological features and active ion channel properties were suggested to contribute to this astonishing processing speed. Here we report an exhaustive study of ultrafast population coding for varying axon initial segment (AIS) location, soma size, and axonal current properties. In particular, we studied their impact on two experimentally observed features 1) precise action potential timing, manifested in a wide-bandwidth dynamic gain, and 2) high-frequency boost under slowly fluctuating correlated input. While the density of axonal channels and their distance from the soma had a very small impact on bandwidth, it could be moderately improved by increasing soma size. When the voltage sensitivity of axonal currents was increased we observed ultrafast coding and high-frequency boost. We conclude that these computationally relevant features are strongly dependent on axonal ion channels' voltage sensitivity, but not their number or exact location. We point out that ion channel properties, unlike dendrite size, can undergo rapid physiological modification, suggesting that the temporal accuracy of neuronal population encoding could be dynamically regulated. Our results are in line with recent experimental findings in AIS pathologies and establish a framework to study structure-function relations in AIS molecular design.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Biologia Computacional , Canais Iônicos/metabolismo
4.
J Neurosci ; 41(37): 7864-7875, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34301829

RESUMO

Current theories of visual consciousness disagree about whether it emerges during early stages of processing in sensory brain regions or later when a widespread frontoparietal network becomes involved. Moreover, disentangling conscious perception from task-related postperceptual processes (e.g., report) and integrating results across different neuroscientific methods remain ongoing challenges. The present study addressed these problems using simultaneous EEG-fMRI and a specific inattentional blindness paradigm with three physically identical phases in female and male human participants. In phase 1, participants performed a distractor task during which line drawings of faces and control stimuli were presented centrally. While some participants spontaneously noticed the faces in phase 1, others remained inattentionally blind. In phase 2, all participants were made aware of the task-irrelevant faces but continued the distractor task. In phase 3, the faces became task-relevant. Bayesian analysis of brain responses demonstrated that conscious face perception was most strongly associated with activation in fusiform gyrus (fMRI) as well as the N170 and visual awareness negativity (EEG). Smaller awareness effects were revealed in the occipital and prefrontal cortex (fMRI). Task-relevant face processing, on the other hand, led to strong, extensive activation of occipitotemporal, frontoparietal, and attentional networks (fMRI). In EEG, it enhanced early negativities and elicited a pronounced P3b component. Overall, we provide evidence that conscious visual perception is linked with early processing in stimulus-specific sensory brain areas but may additionally involve prefrontal cortex. In contrast, the strong activation of widespread brain networks and the P3b are more likely associated with task-related processes.SIGNIFICANCE STATEMENT How does our brain generate visual consciousness-the subjective experience of what it is like to see, for example, a face? To date, it is hotly debated whether it emerges early in sensory brain regions or later when a widespread frontoparietal network is activated. Here, we use simultaneous fMRI and EEG for high spatial and temporal resolution and demonstrate that conscious face perception is predominantly linked to early and occipitotemporal processes, but also prefrontal activity. Task-related processes (e.g., decision-making), on the other hand, elicit brain-wide activations including late and strong frontoparietal activity. These findings challenge numerous previous studies and highlight the importance of investigating the neural correlates of consciousness in the absence of task relevance.


Assuntos
Encéfalo/fisiologia , Estado de Consciência/fisiologia , Reconhecimento Facial/fisiologia , Adulto , Atenção/fisiologia , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Percepção Visual/fisiologia , Adulto Jovem
5.
Neuroimage ; 259: 119445, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35792290

RESUMO

Neural mismatch responses have been proposed to rely on different mechanisms, including prediction error-related activity and adaptation to frequent stimuli. However, the hierarchical cortical structure of these mechanisms is unknown. To investigate this question, we recorded hemodynamic responses while participants (N = 54) listened to an auditory oddball sequence as well as a suited control condition. In addition to effects in sensory processing areas (Heschl's gyrus, superior temporal gyrus (STG)), we found several distinct clusters that indexed deviance processing in frontal and parietal regions (anterior cingulate cortex/supplementary motor area (ACC/SMA), inferior parietal lobule (IPL), anterior insula (AI), inferior frontal junction (IFJ)). Comparing responses to the control stimulus with the deviant and standard enabled us to delineate the contributions of prediction error- or adaptation-related brain activation, respectively. We observed significant effects of adaptation in Heschl's gyrus, STG and ACC/SMA, while prediction error-related activity was observed in STG, IPL, AI and IFJ. Additional dynamic causal modeling confirmed the superiority of a hierarchical processing structure compared to a flat structure. Thus, we found that while prediction-error related processes increased with the hierarchical level of the brain area, adaptation declined. This suggests that the relative contribution of different mechanisms in deviance processing varies across the cortical hierarchy.


Assuntos
Córtex Auditivo , Estimulação Acústica , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética
6.
Hum Brain Mapp ; 43(1): 255-277, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32596977

RESUMO

The ENIGMA group on Generalized Anxiety Disorder (ENIGMA-Anxiety/GAD) is part of a broader effort to investigate anxiety disorders using imaging and genetic data across multiple sites worldwide. The group is actively conducting a mega-analysis of a large number of brain structural scans. In this process, the group was confronted with many methodological challenges related to study planning and implementation, between-country transfer of subject-level data, quality control of a considerable amount of imaging data, and choices related to statistical methods and efficient use of resources. This report summarizes the background information and rationale for the various methodological decisions, as well as the approach taken to implement them. The goal is to document the approach and help guide other research groups working with large brain imaging data sets as they develop their own analytic pipelines for mega-analyses.


Assuntos
Transtornos de Ansiedade/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Interpretação Estatística de Dados , Metanálise como Assunto , Estudos Multicêntricos como Assunto , Neuroimagem , Humanos , Estudos Multicêntricos como Assunto/métodos , Estudos Multicêntricos como Assunto/normas , Neuroimagem/métodos , Neuroimagem/normas
7.
Proc Biol Sci ; 289(1968): 20212514, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35135346

RESUMO

In the past decade, the broadcast-spray application of antibiotics in US crops has increased exponentially in response to bacterial crop pathogens, but little is known about the sublethal impacts on beneficial organisms in agroecosystems. This is concerning given the key roles that microbes play in modulating insect fitness. A growing body of evidence suggests that insect gut microbiomes may play a role in learning and behaviour, which are key for the survival of pollinators and for their pollination efficacy, and which in turn could be disrupted by dietary antibiotic exposure. In the laboratory, we tested the effects of an upper-limit dietary exposure to streptomycin (200 ppm)-an antibiotic widely used to treat bacterial pathogens in crops-on bumblebee (Bombus impatiens) associative learning, foraging and stimulus avoidance behaviour. We used two operant conditioning assays: a free movement proboscis extension reflex protocol focused on short-term memory formation, and an automated radio-frequency identification tracking system focused on foraging. We show that upper-limit dietary streptomycin exposure slowed training, decreased foraging choice accuracy, increased avoidance behaviour and was associated with reduced foraging on sucrose-rewarding artificial flowers flowers. This work underscores the need to further study the impacts of antibiotic use on beneficial insects in agricultural systems.


Assuntos
Agricultura , Exposição Dietética , Estreptomicina , Animais , Antibacterianos/farmacologia , Aprendizagem da Esquiva , Abelhas , Produtos Agrícolas , Flores , Polinização/fisiologia , Estreptomicina/farmacologia
8.
Mol Psychiatry ; 26(8): 4315-4330, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31857689

RESUMO

A growing number of studies have examined alterations in white matter organization in people with posttraumatic stress disorder (PTSD) using diffusion MRI (dMRI), but the results have been mixed which may be partially due to relatively small sample sizes among studies. Altered structural connectivity may be both a neurobiological vulnerability for, and a result of, PTSD. In an effort to find reliable effects, we present a multi-cohort analysis of dMRI metrics across 3047 individuals from 28 cohorts currently participating in the PGC-ENIGMA PTSD working group (a joint partnership between the Psychiatric Genomics Consortium and the Enhancing NeuroImaging Genetics through Meta-Analysis consortium). Comparing regional white matter metrics across the full brain in 1426 individuals with PTSD and 1621 controls (2174 males/873 females) between ages 18-83, 92% of whom were trauma-exposed, we report associations between PTSD and disrupted white matter organization measured by lower fractional anisotropy (FA) in the tapetum region of the corpus callosum (Cohen's d = -0.11, p = 0.0055). The tapetum connects the left and right hippocampus, for which structure and function have been consistently implicated in PTSD. Results were consistent even after accounting for the effects of multiple potentially confounding variables: childhood trauma exposure, comorbid depression, history of traumatic brain injury, current alcohol abuse or dependence, and current use of psychotropic medications. Our results show that PTSD may be associated with alterations in the broader hippocampal network.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Substância Branca , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto Jovem
9.
Mol Psychiatry ; 26(8): 4331-4343, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33288872

RESUMO

Studies of posttraumatic stress disorder (PTSD) report volume abnormalities in multiple regions of the cerebral cortex. However, findings for many regions, particularly regions outside commonly studied emotion-related prefrontal, insular, and limbic regions, are inconsistent and tentative. Also, few studies address the possibility that PTSD abnormalities may be confounded by comorbid depression. A mega-analysis investigating all cortical regions in a large sample of PTSD and control subjects can potentially provide new insight into these issues. Given this perspective, our group aggregated regional volumes data of 68 cortical regions across both hemispheres from 1379 PTSD patients to 2192 controls without PTSD after data were processed by 32 international laboratories using ENIGMA standardized procedures. We examined whether regional cortical volumes were different in PTSD vs. controls, were associated with posttraumatic stress symptom (PTSS) severity, or were affected by comorbid depression. Volumes of left and right lateral orbitofrontal gyri (LOFG), left superior temporal gyrus, and right insular, lingual and superior parietal gyri were significantly smaller, on average, in PTSD patients than controls (standardized coefficients = -0.111 to -0.068, FDR corrected P values < 0.039) and were significantly negatively correlated with PTSS severity. After adjusting for depression symptoms, the PTSD findings in left and right LOFG remained significant. These findings indicate that cortical volumes in PTSD patients are smaller in prefrontal regulatory regions, as well as in broader emotion and sensory processing cortical regions.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Córtex Cerebral/diagnóstico por imagem , Genômica , Humanos , Imageamento por Ressonância Magnética , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/genética , Lobo Temporal
10.
PLoS Comput Biol ; 17(3): e1008740, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33667218

RESUMO

Biochemical processes in cells are governed by complex networks of many chemical species interacting stochastically in diverse ways and on different time scales. Constructing microscopically accurate models of such networks is often infeasible. Instead, here we propose a systematic framework for building phenomenological models of such networks from experimental data, focusing on accurately approximating the time it takes to complete the process, the First Passage (FP) time. Our phenomenological models are mixtures of Gamma distributions, which have a natural biophysical interpretation. The complexity of the models is adapted automatically to account for the amount of available data and its temporal resolution. The framework can be used for predicting behavior of FP systems under varying external conditions. To demonstrate the utility of the approach, we build models for the distribution of inter-spike intervals of a morphologically complex neuron, a Purkinje cell, from experimental and simulated data. We demonstrate that the developed models can not only fit the data, but also make nontrivial predictions. We demonstrate that our coarse-grained models provide constraints on more mechanistically accurate models of the involved phenomena.


Assuntos
Modelos Biológicos , Animais , Biologia Computacional , Células de Purkinje
11.
Hum Brain Mapp ; 42(3): 824-836, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33155747

RESUMO

In a previous study, we investigated the resting-state fMRI effective connectivity (EC) between the bed nucleus of the stria terminalis (BNST) and the laterobasal (LB), centromedial (CM), and superficial (SF) amygdala. We found strong negative EC from all amygdala nuclei to the BNST, while the BNST showed positive EC to the amygdala. However, the validity of these findings remains unclear, since a reproduction in different samples has not been done. Moreover, the association of EC with measures of anxiety offers deeper insight, due to the known role of the BNST and amygdala in fear and anxiety. Here, we aimed to reproduce our previous results in three additional samples. We used spectral Dynamic Causal Modeling to estimate the EC between the BNST, the LB, CM, and SF, and its association with two measures of self-reported anxiety. Our results revealed consistency over samples with regard to the negative EC from the amygdala nuclei to the BNST, while the positive EC from BNST to the amygdala was also found, but weaker and more heterogenic. Moreover, we found the BNST-BNST EC showing a positive and the CM-BNST EC, showing a negative association with anxiety. Our study suggests a reproducible pattern of negative EC from the amygdala to the BNST along with weaker positive EC from the BNST to the amygdala. Moreover, less BNST self-inhibition and more inhibitory influence from the CM to the BNST seems to be a pattern of EC that is related to higher anxiety.


Assuntos
Tonsila do Cerebelo/fisiologia , Ansiedade/fisiopatologia , Conectoma/métodos , Rede Nervosa/fisiologia , Núcleos Septais/fisiologia , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Ansiedade/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos Testes , Núcleos Septais/diagnóstico por imagem , Adulto Jovem
12.
Proc Natl Acad Sci U S A ; 115(36): E8538-E8546, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127024

RESUMO

Traditional theories of sensorimotor learning posit that animals use sensory error signals to find the optimal motor command in the face of Gaussian sensory and motor noise. However, most such theories cannot explain common behavioral observations, for example, that smaller sensory errors are more readily corrected than larger errors and large abrupt (but not gradually introduced) errors lead to weak learning. Here, we propose a theory of sensorimotor learning that explains these observations. The theory posits that the animal controls an entire probability distribution of motor commands rather than trying to produce a single optimal command and that learning arises via Bayesian inference when new sensory information becomes available. We test this theory using data from a songbird, the Bengalese finch, that is adapting the pitch (fundamental frequency) of its song following perturbations of auditory feedback using miniature headphones. We observe the distribution of the sung pitches to have long, non-Gaussian tails, which, within our theory, explains the observed dynamics of learning. Further, the theory makes surprising predictions about the dynamics of the shape of the pitch distribution, which we confirm experimentally.


Assuntos
Aprendizagem/fisiologia , Modelos Biológicos , Aves Canoras/fisiologia , Vocalização Animal/fisiologia , Animais
13.
Hum Brain Mapp ; 40(9): 2723-2735, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30829454

RESUMO

The bed nucleus of the stria terminalis (BNST) and the laterobasal nucleus (LB), centromedial nucleus (CM), and superficial nucleus (SF) of the amygdala form an interconnected dynamical system, whose combined activity mediates a variety of behavioral and autonomic responses in reaction to homeostatic challenges. Although previous research provided deeper insight into the structural and functional connections between these nuclei, studies investigating their resting-state functional magnetic resonance imaging (fMRI) connectivity were solely based on undirected connectivity measures. Here, we used high-quality data of 391 subjects from the Human Connectome Project to estimate the effective connectivity (EC) between the BNST, the LB, CM, and SF through spectral dynamic causal modeling, the relation of the EC estimates with age and sex as well as their stability over time. Our results reveal a time-stable asymmetric EC structure with positive EC between all amygdala nuclei, which strongly inhibited the BNST while the BNST exerted positive influence onto all amygdala nuclei. Simulation of the impulse response of the estimated system showed that this EC structure shapes partially antagonistic (out of phase) activity flow between the BNST and amygdala nuclei. Moreover, the BNST-LB and BNST-CM EC parameters were less negative in males. In conclusion, our data points toward partially separated information processing between BNST and amygdala nuclei in the resting-state.


Assuntos
Tonsila do Cerebelo/fisiologia , Conectoma/métodos , Rede Nervosa/fisiologia , Núcleos Septais/fisiologia , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Núcleos Septais/diagnóstico por imagem , Adulto Jovem
14.
Neuroimage ; 166: 110-116, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107120

RESUMO

An influential framework suggests that the central nucleus of the amygdala (CeA) is involved in phasic responses to threat, while the bed nucleus of the stria terminalis (BNST) mediates sustained anxiety. However, this model has been questioned, proposing that the role of the BNST is not limited to sustained threat contexts. Rather, amygdala and BNST also seem to work in concert in the processing of discrete and briefly presented threat-related stimuli, likely dependent on inter-individual differences in anxiety. A direct test of this assumption with sufficient experimental power is missing in human research and the degree to which individual differences in trait anxiety moderate phasic responses and functional connectivity of amygdala and BNST during threat processing remains unclear. The current event-related functional magnetic resonance imaging (fMRI) study investigated activation and connectivity of amygdala and BNST, as well as modulating effects of trait anxiety, during processing of briefly presented threat-related relative to neutral standardized pictures in 93 psychiatrically healthy individuals. Both amygdala and BNST activation was increased during presentation of threat-related relative to neutral pictures. Furthermore, functional connectivity between BNST and amygdala in response to threat was positively associated with trait anxiety. These findings suggest that amygdala and BNST form a functional unit during phasic threat processing whereby their connectivity is shaped by inter-individual differences in trait anxiety.


Assuntos
Tonsila do Cerebelo/fisiologia , Ansiedade/fisiopatologia , Conectoma/métodos , Medo/fisiologia , Personalidade/fisiologia , Núcleos Septais/fisiologia , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Ansiedade/diagnóstico por imagem , Feminino , Humanos , Individualidade , Imageamento por Ressonância Magnética , Masculino , Núcleos Septais/diagnóstico por imagem , Adulto Jovem
15.
Neuroimage ; 178: 660-667, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29864521

RESUMO

The spatio-temporal neural basis of earliest differentiation between emotional and neutral facial expressions is a matter of debate. The present study used concurrent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) in order to investigate the 'when' and 'where' of earliest prioritization of emotional over neutral expressions. We measured event-related potentials (ERPs) and blood oxygen dependent (BOLD) signal changes in response to facial expressions of varying emotional intensity and different valence categories. Facial expressions were presented superimposed by two horizontal bars and participants engaged in a focal bars task (low load, high load), in order to manipulate the availability of attentional resources during face perception. EEG data revealed the earliest expression effects in the P1 range (76-128 ms) as a parametric function of stimulus arousal independent of load conditions. Conventional fMRI data analysis also demonstrated significant modulations as a function of stimulus arousal, independent of load, in amygdala, superior temporal sulcus, fusiform gyrus and lateral occipital cortex. Correspondingly, EEG-informed fMRI analysis revealed a significant positive correlation between single-trial P1 amplitudes and BOLD responses in amygdala and lateral posterior occipital cortex. Our results are in line with the hypothesis of the amygdala as fast responding relevance detector and corresponding effects in early visual face processing areas across facial expressions and load conditions.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Emoções/fisiologia , Expressão Facial , Percepção Visual/fisiologia , Eletroencefalografia/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa , Processamento de Sinais Assistido por Computador , Adulto Jovem
16.
Brain Cogn ; 125: 142-148, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29990704

RESUMO

Previous studies have reported cerebellar activations during error and reward processing. The present study investigated if the cerebellum differentially processes feedback depending on changes in response strategy during reversal learning, as is conceivable given its internal models for movement and thought. Negative relative to positive feedback in an fMRI-based reversal learning task was hypothesized to be associated with increased cerebellar activations. Moreover, increased activations were expected for negative feedback followed by a change in response strategy compared to negative feedback not followed by such a change, and for first positive feedback after compared to final negative feedback before a change, due to updating of internal models. As predicted, activation in lobules VI and VIIa/Crus I was increased for negative relative to positive feedback, and for final negative feedback before a change in response strategy relative to negative feedback not associated with a change. Moreover, activation was increased for first positive feedback after relative to final negative feedback before a change. These findings are consistent with updating of cerebellar internal models to accommodate new behavioral strategies. Recruitment of posterior regions in reversal learning is in line with the cerebellar functional topography, with posterior regions involved in complex motor and cognitive functions.


Assuntos
Cerebelo/fisiologia , Cognição/fisiologia , Retroalimentação Psicológica/fisiologia , Reversão de Aprendizagem/fisiologia , Adulto , Mapeamento Encefálico , Cerebelo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Recompensa , Adulto Jovem
17.
BMC Health Serv Res ; 15: 6, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25608564

RESUMO

BACKGROUND: The failure rates for implementing complex innovations in healthcare organizations are high. Estimates range from 30% to 90% depending on the scope of the organizational change involved, the definition of failure, and the criteria to judge it. The innovation implementation framework offers a promising approach to examine the organizational factors that determine effective implementation. To date, the utility of this framework in a healthcare setting has been limited to qualitative studies and/or group level analyses. Therefore, the goal of this study was to quantitatively examine this framework among individual participants in the National Cancer Institute's Community Clinical Oncology Program using structural equation modeling. METHODS: We examined the innovation implementation framework using structural equation modeling (SEM) among 481 physician participants in the National Cancer Institute's Community Clinical Oncology Program (CCOP). The data sources included the CCOP Annual Progress Reports, surveys of CCOP physician participants and administrators, and the American Medical Association Physician Masterfile. RESULTS: Overall the final model fit well. Our results demonstrated that not only did perceptions of implementation climate have a statistically significant direct effect on implementation effectiveness, but physicians' perceptions of implementation climate also mediated the relationship between organizational implementation policies and practices (IPP) and enrollment (p <0.05). In addition, physician factors such as CCOP PI status, age, radiological oncologists, and non-oncologist specialists significantly influenced enrollment as well as CCOP organizational size and structure, which had indirect effects on implementation effectiveness through IPP and implementation climate. CONCLUSIONS: Overall, our results quantitatively confirmed the main relationship postulated in the innovation implementation framework between IPP, implementation climate, and implementation effectiveness among individual physicians. This finding is important, as although the model has been discussed within healthcare organizations before, the studies have been predominately qualitative in nature and/or at the organizational level. In addition, our findings have practical applications. Managers looking to increase implementation effectiveness of an innovation should focus on creating an environment that physicians perceive as encouraging implementation. In addition, managers should consider instituting specific organizational IPP aimed at increasing positive perceptions of implementation climate. For example, IPP should include specific expectations, support, and rewards for innovation use.


Assuntos
Eficiência Organizacional/estatística & dados numéricos , Eficiência Organizacional/normas , National Cancer Institute (U.S.)/estatística & dados numéricos , National Cancer Institute (U.S.)/normas , Serviço Hospitalar de Oncologia/estatística & dados numéricos , Serviço Hospitalar de Oncologia/normas , Médicos/psicologia , Adulto , Atitude do Pessoal de Saúde , Estudos Transversais , Interpretação Estatística de Dados , Feminino , Previsões , Humanos , Masculino , Pessoa de Meia-Idade , Inovação Organizacional , Pesquisa Qualitativa , Estados Unidos
18.
Mov Ecol ; 12(1): 37, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725084

RESUMO

Integrated step-selection analyses (iSSAs) are versatile and powerful frameworks for studying habitat and movement preferences of tracked animals. iSSAs utilize integrated step-selection functions (iSSFs) to model movements in discrete time, and thus, require animal location data that are regularly spaced in time. However, many real-world datasets are incomplete due to tracking devices failing to locate an individual at one or more scheduled times, leading to slight irregularities in the duration between consecutive animal locations. To address this issue, researchers typically only consider bursts of regular data (i.e., sequences of locations that are equally spaced in time), thereby reducing the number of observations used to model movement and habitat selection. We reassess this practice and explore four alternative approaches that account for temporal irregularity resulting from missing data. Using a simulation study, we compare these alternatives to a baseline approach where temporal irregularity is ignored and demonstrate the potential improvements in model performance that can be gained by leveraging these additional data. We also showcase these benefits using a case study on a spotted hyena (Crocuta crocuta).

19.
Am J Psychiatry ; : appiajp20230032, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38859702

RESUMO

OBJECTIVE: Specific phobia is a common anxiety disorder, but the literature on associated brain structure alterations exhibits substantial gaps. The ENIGMA Anxiety Working Group examined brain structure differences between individuals with specific phobias and healthy control subjects as well as between the animal and blood-injection-injury (BII) subtypes of specific phobia. Additionally, the authors investigated associations of brain structure with symptom severity and age (youths vs. adults). METHODS: Data sets from 31 original studies were combined to create a final sample with 1,452 participants with phobia and 2,991 healthy participants (62.7% female; ages 5-90). Imaging processing and quality control were performed using established ENIGMA protocols. Subcortical volumes as well as cortical surface area and thickness were examined in a preregistered analysis. RESULTS: Compared with the healthy control group, the phobia group showed mostly smaller subcortical volumes, mixed surface differences, and larger cortical thickness across a substantial number of regions. The phobia subgroups also showed differences, including, as hypothesized, larger medial orbitofrontal cortex thickness in BII phobia (N=182) compared with animal phobia (N=739). All findings were driven by adult participants; no significant results were observed in children and adolescents. CONCLUSIONS: Brain alterations associated with specific phobia exceeded those of other anxiety disorders in comparable analyses in extent and effect size and were not limited to reductions in brain structure. Moreover, phenomenological differences between phobia subgroups were reflected in diverging neural underpinnings, including brain areas related to fear processing and higher cognitive processes. The findings implicate brain structure alterations in specific phobia, although subcortical alterations in particular may also relate to broader internalizing psychopathology.

20.
Landsc Ecol ; 38(4): 981-998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36941928

RESUMO

Context: Dispersal of individuals contributes to long-term population persistence, yet requires a sufficient degree of landscape connectivity. To date, connectivity has mainly been investigated using least-cost analysis and circuit theory, two methods that make assumptions that are hardly applicable to dispersal. While these assumptions can be relaxed by explicitly simulating dispersal trajectories across the landscape, a unified approach for such simulations is lacking. Objectives: Here, we propose and apply a simple three-step approach to simulate dispersal and to assess connectivity using empirical GPS movement data and a set of habitat covariates. Methods: In step one of the proposed approach, we use integrated step-selection functions to fit a mechanistic movement model describing habitat and movement preferences of dispersing individuals. In step two, we apply the parameterized model to simulate dispersal across the study area. In step three, we derive three complementary connectivity maps; a heatmap highlighting frequently traversed areas, a betweenness map pinpointing dispersal corridors, and a map of inter-patch connectivity indicating the presence and intensity of functional links between habitat patches. We demonstrate the applicability of the proposed three-step approach in a case study in which we use GPS data collected on dispersing African wild dogs (Lycaon pictus) inhabiting northern Botswana. Results: Using step-selection functions we successfully parametrized a detailed dispersal model that described dispersing individuals' habitat and movement preferences, as well as potential interactions among the two. The model substantially outperformed a model that omitted such interactions and enabled us to simulate 80,000 dispersal trajectories across the study area. Conclusion: By explicitly simulating dispersal trajectories, our approach not only requires fewer unrealistic assumptions about dispersal, but also permits the calculation of multiple connectivity metrics that together provide a comprehensive view of landscape connectivity. In our case study, the three derived connectivity maps revealed several wild dog dispersal hotspots and corridors across the extent of our study area. Each map highlighted a different aspect of landscape connectivity, thus emphasizing their complementary nature. Overall, our case study demonstrates that a simulation-based approach offers a simple yet powerful alternative to traditional connectivity modeling techniques. It is therefore useful for a variety of applications in ecological, evolutionary, and conservation research. Supplementary Information: The online version contains supplementary material available at 10.1007/s10980-023-01602-4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA