Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Nature ; 628(8009): 765-770, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658685

RESUMO

Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight1,2. Following a decade of advancement, Cu2O photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials3-5. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance6. Here we demonstrate performance of Cu2O photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal Cu2O thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal Cu2O samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline Cu2O photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm-2 current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.

2.
Nature ; 608(7923): 499-503, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978130

RESUMO

Moiré superlattices in atomically thin van der Waals heterostructures hold great promise for extended control of electronic and valleytronic lifetimes1-7, the confinement of excitons in artificial moiré lattices8-13 and the formation of exotic quantum phases14-18. Such moiré-induced emergent phenomena are particularly strong for interlayer excitons, where the hole and the electron are localized in different layers of the heterostructure19,20. To exploit the full potential of correlated moiré and exciton physics, a thorough understanding of the ultrafast interlayer exciton formation process and the real-space wavefunction confinement is indispensable. Here we show that femtosecond photoemission momentum microscopy provides quantitative access to these key properties of the moiré interlayer excitons. First, we elucidate that interlayer excitons are dominantly formed through femtosecond exciton-phonon scattering and subsequent charge transfer at the interlayer-hybridized Σ valleys. Second, we show that interlayer excitons exhibit a momentum fingerprint that is a direct hallmark of the superlattice moiré modification. Third, we reconstruct the wavefunction distribution of the electronic part of the exciton and compare the size with the real-space moiré superlattice. Our work provides direct access to interlayer exciton formation dynamics in space and time and reveals opportunities to study correlated moiré and exciton physics for the future realization of exotic quantum phases of matter.

4.
Nano Lett ; 24(23): 7084-7090, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814251

RESUMO

Magnesium is a recent addition to the plasmonic toolbox: nanomaterials that efficiently utilize photons' energy due to their ability to sustain localized surface plasmon resonances. Magnesium nanoparticles protected by a native oxide shell can efficiently absorb light across the solar spectrum, making them a promising photocatalytic material. However, their inherent reactivity toward oxidation may limit the number of reactions in which Mg-MgO can be used. Here, we investigate the stability of plasmonic Mg-MgO core-shell nanoplates under oxidative conditions. We demonstrate that the MgO shell stabilizes the metallic Mg core against oxidation in air at up to 400 °C. Furthermore, we show that the reactivity of Mg-MgO nanoplates with water vapor (3.5 vol % in N2) decreases with temperature, with no oxidation of the Mg core detected from 200 to 400 °C. This work unravels the potential of Mg-MgO nanoparticles for a broad range of catalytic transformations occurring in oxidative environments.

5.
Nano Lett ; 23(12): 5506-5513, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37289669

RESUMO

Twisted bilayer graphene provides an ideal solid-state model to explore correlated material properties and opportunities for a variety of optoelectronic applications, but reliable, fast characterization of the twist angle remains a challenge. Here we introduce spectroscopic ellipsometric contrast microscopy (SECM) as a tool for mapping twist angle disorder in optically resonant twisted bilayer graphene. We optimize the ellipsometric angles to enhance the image contrast based on measured and calculated reflection coefficients of incident light. The optical resonances associated with van Hove singularities correlate well to Raman and angle-resolved photoelectron emission spectroscopy, confirming the accuracy of SECM. The results highlight the advantages of SECM, which proves to be a fast, nondestructive method for characterization of twisted bilayer graphene over large areas, unlocking process, material, and device screening and cross-correlative measurement potential for bilayer and multilayer materials.

6.
Nano Lett ; 23(1): 34-41, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36535029

RESUMO

2D materials offer the ability to expose their electronic structure to manipulations by a proximity effect. This could be harnessed to craft properties of 2D interfaces and van der Waals heterostructures in devices and quantum materials. We explore the possibility to create an artificial spin polarized electrode from graphene through proximity interaction with a ferromagnetic insulator to be used in a magnetic tunnel junction (MTJ). Ferromagnetic insulator/graphene artificial electrodes were fabricated and integrated in MTJs based on spin analyzers. Evidence of the emergence of spin polarization in proximitized graphene layers was observed through the occurrence of tunnel magnetoresistance. We deduced a spin dependent splitting of graphene's Dirac band structure (∼15 meV) induced by the proximity effect, potentially leading to full spin polarization and opening the way to gating. The extracted spin signals illustrate the potential of 2D quantum materials based on proximity effects to craft spintronics functionalities, from vertical MTJs memory cells to logic circuits.

7.
Nanotechnology ; 33(48)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35977453

RESUMO

Remote epitaxy is an emerging materials synthesis technique which employs a 2D interface layer, often graphene, to enable the epitaxial deposition of low defect single crystal films while restricting bonding between the growth layer and the underlying substrate. This allows for the subsequent release of the epitaxial film for integration with other systems and reuse of growth substrates. This approach is applicable to material systems with an ionic component to their bonding, making it notably appealing for III-V alloys, which are a technologically important family of materials. Chemical vapour deposition growth of graphene and wet transfer to a III-V substrate with a polymer handle is a potentially scalable and low cost approach to producing the required growth surface for remote epitaxy of these materials, however, the presence of water promotes the formation of a III-V oxide layer, which degrades the quality of subsequently grown epitaxial films. This work demonstrates the use of an argon ion beam for the controlled introduction of defects in a monolayer graphene interface layer to enable the growth of a single crystal GaAs film by molecular beam epitaxy, despite the presence of a native oxide at the substrate/graphene interface. A hybrid mechanism of defect seeded lateral overgrowth with remote epitaxy contributing the coalescence of the film is indicated. The exfoliation of the GaAs films reveals the presence of defect seeded nucleation sites, highlighting the need to balance the benefits of defect seeding on crystal quality against the requirement for subsequent exfoliation of the film, for future large area development of this approach.

8.
Nature ; 531(7594): 317-22, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26983538

RESUMO

Controlled formation of non-equilibrium crystal structures is one of the most important challenges in crystal growth. Catalytically grown nanowires are ideal systems for studying the fundamental physics of phase selection, and could lead to new electronic applications based on the engineering of crystal phases. Here we image gallium arsenide (GaAs) nanowires during growth as they switch between phases as a result of varying growth conditions. We find clear differences between the growth dynamics of the phases, including differences in interface morphology, step flow and catalyst geometry. We explain these differences, and the phase selection, using a model that relates the catalyst volume, the contact angle at the trijunction (the point at which solid, liquid and vapour meet) and the nucleation site of each new layer of GaAs. This model allows us to predict the conditions under which each phase should be observed, and use these predictions to design GaAs heterostructures. These results could apply to phase selection in other nanowire systems.

9.
J Am Chem Soc ; 143(32): 12524-12534, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34355571

RESUMO

Iridium and ruthenium and their oxides/hydroxides are the best candidates for the oxygen evolution reaction under harsh acidic conditions owing to the low overpotentials observed for Ru- and Ir-based anodes and the high corrosion resistance of Ir-oxides. Herein, by means of cutting edge operando surface and bulk sensitive X-ray spectroscopy techniques, specifically designed electrode nanofabrication and ab initio DFT calculations, we were able to reveal the electronic structure of the active IrOx centers (i.e., oxidation state) during electrocatalytic oxidation of water in the surface and bulk of high-performance Ir-based catalysts. We found the oxygen evolution reaction is controlled by the formation of empty Ir 5d states in the surface ascribed to the formation of formally IrV species leading to the appearance of electron-deficient oxygen species bound to single iridium atoms (µ1-O and µ1-OH) that are responsible for water activation and oxidation. Oxygen bound to three iridium centers (µ3-O) remains the dominant species in the bulk but do not participate directly in the electrocatalytic reaction, suggesting bulk oxidation is limited. In addition a high coverage of a µ1-OO (peroxo) species during the OER is excluded. Moreover, we provide the first photoelectron spectroscopic evidence in bulk electrolyte that the higher surface-to-bulk ratio in thinner electrodes enhances the material usage involving the precipitation of a significant part of the electrode surface and near-surface active species.

10.
Nano Lett ; 19(4): 2516-2523, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30865468

RESUMO

Point defects can have significant impact on the mechanical, electronic, and optical properties of materials. The development of robust, multidimensional, high-throughput, and large-scale characterization techniques of defects is thus crucial for the establishment of integrated nanophotonic technologies and material growth optimization. Here, we demonstrate the potential of wide-field spectral single-molecule localization microscopy (SMLM) for the determination of ensemble spectral properties as well as the characterization of spatial, spectral, and temporal dynamics of single defects in chemical vapor deposition (CVD)-grown and irradiated exfoliated hexagonal boron-nitride materials. We characterize the heterogeneous spectral response of our samples and identify at least two types of defects in CVD-grown materials, while irradiated exfoliated flakes show predominantly only one type of defects. We analyze the blinking kinetics and spectral emission for each type of defects and discuss their implications with respect to the observed spectral heterogeneity of our samples. Our study shows the potential of wide-field spectral SMLM techniques in material science and paves the way toward the quantitative multidimensional mapping of defect properties.

11.
Nano Lett ; 19(9): 6299-6307, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419143

RESUMO

Many potential applications of monolayer transition metal dichalcogenides (TMDs) require both high photoluminescence (PL) yield and high electrical mobilities. However, the PL yield of as prepared TMD monolayers is low and believed to be limited by defect sites and uncontrolled doping. This has led to a large effort to develop chemical passivation methods to improve PL and mobilities. The most successful of these treatments is based on the nonoxidizing organic "superacid" bis(trifluoromethane)sulfonimide (TFSI) which has been shown to yield bright monolayers of molybdenum disulfide (MoS2) and tungsten disulfide (WS2) but with trap-limited PL dynamics and no significant improvements in field effect mobilities. Here, using steady-state and time-resolved PL microscopy we demonstrate that treatment of WS2 monolayers with oleic acid (OA) can greatly enhance the PL yield, resulting in bright neutral exciton emission comparable to TFSI treated monolayers. At high excitation densities, the OA treatment allows for bright trion emission, which has not been demonstrated with previous chemical treatments. We show that unlike the TFSI treatment, the OA yields PL dynamics that are largely trap free. In addition, field effect transistors show an increase in mobilities with the OA treatment. These results suggest that OA serves to passivate defect sites in the WS2 monolayers in a manner akin to the passivation of colloidal quantum dots with OA ligands. Our results open up a new pathway to passivate and tune defects in monolayer TMDs using simple "wet" chemistry techniques, allowing for trap-free electronic properties and bright neutral exciton and trion emission.

12.
Nano Lett ; 18(3): 1739-1744, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29393651

RESUMO

Point defects significantly influence the optical and electrical properties of solid-state materials due to their interactions with charge carriers, which reduce the band-to-band optical transition energy. There has been a demand for developing direct optical imaging methods that would allow in situ characterization of individual defects with nanometer resolution. Here, we demonstrate the localization and quantitative counting of individual optically active defects in monolayer hexagonal boron nitride using single molecule localization microscopy. By exploiting the blinking behavior of defect emitters to temporally isolate multiple emitters within one diffraction limited region, we could resolve two defect emitters with a point-to-point distance down to ten nanometers. The results and conclusion presented in this work add unprecedented dimensions toward future applications of defects in quantum information processing and biological imaging.

13.
Nano Lett ; 17(7): 4223-4230, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28592108

RESUMO

A long-standing problem in the application of solid-state nanopores is the lack of the precise control over the geometry of artificially formed pores compared to the well-defined geometry in their biological counterpart, that is, protein nanopores. To date, experimentally investigated solid-state nanopores have been shown to adopt an approximately circular shape. In this Letter, we investigate the geometrical effect of the nanopore shape on ionic blockage induced by DNA translocation using triangular h-BN nanopores and approximately circular molybdenum disulfide (MoS2) nanopores. We observe a striking geometry-dependent ion scattering effect, which is further corroborated by a modified ionic blockage model. The well-acknowledged ionic blockage model is derived from uniform ion permeability through the 2D nanopore plane and hemisphere like access region in the nanopore vicinity. On the basis of our experimental results, we propose a modified ionic blockage model, which is highly related to the ionic profile caused by geometrical variations. Our findings shed light on the rational design of 2D nanopores and should be applicable to arbitrary nanopore shapes.

14.
Angew Chem Int Ed Engl ; 57(33): 10595-10599, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29888857

RESUMO

Hydrogenases (H2 ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p-type Si photocathode for optimal loading and wiring of H2 ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton-reducing Si|IO-TiO2 |H2 ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias-free) water splitting by wiring Si|IO-TiO2 |H2 ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO-TiO2 |H2 ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z-scheme that replaces the non-complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode.


Assuntos
Hidrogenase/metabolismo , Energia Solar , Água/metabolismo , Bismuto/química , Técnicas Eletroquímicas , Eletrodos , Hidrogênio/metabolismo , Luz , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Técnicas de Microbalança de Cristal de Quartzo , Silício/química , Titânio/química , Vanadatos/química , Água/química
15.
Opt Express ; 25(3): 2725-2732, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519114

RESUMO

We demonstrate a method for reliably determining the electrical properties of graphene including the carrier scattering time and carrier drift mobility from terahertz time- domain spectroscopy measurements (THz-TDS). By comparing transients originating from directly transmitted pulses and the echoes from internal reflections in a substrate, we are able to extract electrical properties irrespective of random time delays between pulses emitted in a THz-TDS setup. If such time delays are not accounted for they can significantly influence the extracted properties of the material. The technique is useful for a robust determination of electrical properties from THz-TDS measurements and is compatible with substrate materials where transients from internal reflections are well-separated in time.

16.
Nano Lett ; 16(10): 6196-6206, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27576749

RESUMO

The dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain. The facets that define the domain shapes lie normal to slow growth directions, which are determined by the interfacial mobility when attachment to domain edges is rate-limiting, as well as anisotropy in surface diffusion as diffusion becomes rate-limiting. Our observations and analysis thus reveal that the structure of CVD graphene films is intimately linked to that of the underlying polycrystalline catalyst, with both interfacial mobility and diffusional anisotropy depending on the presence of step edges and grain boundaries. The growth model developed serves as a general framework for understanding and optimizing the growth of 2D materials on polycrystalline catalysts.

17.
Nano Lett ; 16(2): 1250-61, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26756610

RESUMO

Highly controlled Fe-catalyzed growth of monolayer hexagonal boron nitride (h-BN) films is demonstrated by the dissolution of nitrogen into the catalyst bulk via NH3 exposure prior to the actual growth step. This "pre-filling" of the catalyst bulk reservoir allows us to control and limit the uptake of B and N species during borazine exposure and thereby to control the incubation time and h-BN growth kinetics while also limiting the contribution of uncontrolled precipitation-driven h-BN growth during cooling. Using in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy combined with systematic growth calibrations, we develop an understanding and framework for engineering the catalyst bulk reservoir to optimize the growth process, which is also relevant to other 2D materials and their heterostructures.


Assuntos
Compostos de Boro/química , Nanoestruturas/química , Compostos de Amônio/química , Compostos de Boro/síntese química , Catálise , Ferro/química , Cinética , Nanoestruturas/ultraestrutura , Nitrogênio/química , Propriedades de Superfície , Difração de Raios X
18.
Nano Lett ; 16(5): 2988-93, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27043922

RESUMO

The remarkable properties of graphene, such as broadband optical absorption, high carrier mobility, and short photogenerated carrier lifetime, are particularly attractive for high-frequency optoelectronic devices operating at 1.55 µm telecom wavelength. Moreover, the possibility to transfer graphene on a silicon substrate using a complementary metal-oxide-semiconductor-compatible process opens the ability to integrate electronics and optics on a single cost-effective chip. Here, we report an optoelectronic mixer based on chemical vapor-deposited graphene transferred on an oxidized silicon substrate. Our device consists in a coplanar waveguide that integrates a graphene channel, passivated with an atomic layer-deposited Al2O3 film. With this new structure, 30 GHz optoelectronic mixing in commercially available graphene is demonstrated for the first time. In particular, using a 30 GHz intensity-modulated optical signal and a 29.9 GHz electrical signal, we show frequency downconversion to 100 MHz. These results open promising perspectives in the domain of optoelectronics for radar and radio-communication systems.

19.
Small ; 12(10): 1334-41, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26756792

RESUMO

Resistive switching memories are nonvolatile memory cells based on nano-ionic redox processes and offer prospects for high scalability, ultrafast write and read access, and low power consumption. In two-terminal cation based devices a nanoscale filament is formed in a switching material by metal ion migration from the anode to the cathode. However, the filament growth and dissolution mechanisms and the dynamics involved are still open questions, restricting device optimization. Here, a spectroscopic technique to optically characterize in situ the resistive switching effect is presented. Resistive switches arranged in a nanoparticle-on-mirror geometry are developed, exploiting the high sensitivity to morphological changes occurring in the tightly confined plasmonic hotspot within the switching material. The focus is on electrochemical metallization and the optical signatures detected over many cycles indicate incomplete removal of metal particles from the filament upon RESET and suggest that the filament can nucleate from different positions from cycle to cycle. The technique here is nondestructive and the measurements can be easily performed in tunable ambient conditions and with realistic cell geometries.

20.
Opt Lett ; 41(14): 3281-4, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27420515

RESUMO

By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third-order nonlinear response of graphene and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, n2=-1.1×10-13 m2/W. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature and to discuss the discrepancies, taking into account parameters such as doping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA