Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5045, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890296

RESUMO

The global energy budget is pivotal to understanding planetary evolution and climate behaviors. Assessing the energy budget of giant planets, particularly those with large seasonal cycles, however, remains a challenge without long-term observations. Evolution models of Saturn cannot explain its estimated Bond albedo and internal heat flux, mainly because previous estimates were based on limited observations. Here, we analyze the long-term observations recorded by the Cassini spacecraft and find notably higher Bond albedo (0.41 ± 0.02) and internal heat flux (2.84 ± 0.20 Wm-2) values than previous estimates. Furthermore, Saturn's global energy budget is not in a steady state and exhibits significant dynamical imbalances. The global radiant energy deficit at the top of the atmosphere, indicative of the planetary cooling of Saturn, reveals remarkable seasonal fluctuations with a magnitude of 16.0 ± 4.2%. Further analysis of the energy budget of the upper atmosphere including the internal heat suggests seasonal energy imbalances at both global and hemispheric scales, contributing to the development of giant convective storms on Saturn. Similar seasonal variabilities of planetary cooling and energy imbalance exist in other giant planets within and beyond the Solar System, a prospect currently overlooked in existing evolutional and atmospheric models.

2.
Space Sci Rev ; 216(2): 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32165773

RESUMO

Atmospheric circulation patterns derived from multi-spectral remote sensing can serve as a guide for choosing a suitable entry location for a future in situ probe mission to the Ice Giants. Since the Voyager-2 flybys in the 1980s, three decades of observations from ground- and space-based observatories have generated a picture of Ice Giant circulation that is complex, perplexing, and altogether unlike that seen on the Gas Giants. This review seeks to reconcile the various competing circulation patterns from an observational perspective, accounting for spatially-resolved measurements of: zonal albedo contrasts and banded appearances; cloud-tracked zonal winds; temperature and para-H2 measurements above the condensate clouds; and equator-to-pole contrasts in condensable volatiles (methane, ammonia, and hydrogen sulphide) in the deeper troposphere. These observations identify three distinct latitude domains: an equatorial domain of deep upwelling and upper-tropospheric subsidence, potentially bounded by peaks in the retrograde zonal jet and analogous to Jovian cyclonic belts; a mid-latitude transitional domain of upper-tropospheric upwelling, vigorous cloud activity, analogous to Jovian anticyclonic zones; and a polar domain of strong subsidence, volatile depletion, and small-scale (and potentially seasonally-variable) convective activity. Taken together, the multi-wavelength observations suggest a tiered structure of stacked circulation cells (at least two in the troposphere and one in the stratosphere), potentially separated in the vertical by (i) strong molecular weight gradients associated with cloud condensation, and by (ii) transitions from a thermally-direct circulation regime at depth to a wave- and radiative-driven circulation regime at high altitude. The inferred circulation can be tested in the coming decade by 3D numerical simulations of the atmosphere, and by observations from future world-class facilities. The carrier spacecraft for any probe entry mission must ultimately carry a suite of remote-sensing instruments capable of fully constraining the atmospheric motions at the probe descent location.

3.
Science ; 347(6220): aaa0709, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613896

RESUMO

Heat transport and ice sublimation in comets are interrelated processes reflecting properties acquired at the time of formation and during subsequent evolution. The Microwave Instrument on the Rosetta Orbiter (MIRO) acquired maps of the subsurface temperature of comet 67P/Churyumov-Gerasimenko, at 1.6 mm and 0.5 mm wavelengths, and spectra of water vapor. The total H2O production rate varied from 0.3 kg s(-1) in early June 2014 to 1.2 kg s(-1) in late August and showed periodic variations related to nucleus rotation and shape. Water outgassing was localized to the "neck" region of the comet. Subsurface temperatures showed seasonal and diurnal variations, which indicated that the submillimeter radiation originated at depths comparable to the diurnal thermal skin depth. A low thermal inertia (~10 to 50 J K(-1) m(-2) s(-0.5)), consistent with a thermally insulating powdered surface, is inferred.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA