Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(5): e2214655120, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36689658

RESUMO

In parallel with pronounced cooling in the oceans, vast areas of the continents experienced enhanced aridification and restructuring of vegetation and animal communities during the Late Miocene. Debate continues over whether pCO2-induced global cooling was the primary driver of this climate and ecosystem upheaval on land. Here we present an 8 to 5 Ma land surface temperatures (LST) record from East Asia derived from paleosol carbonate clumped isotopes and integrated with climate model simulations. The LST cooled by ~7 °C between 7.5 and 5.7 Ma, followed by rapid warming across the Miocene-Pliocene transition (5.5 to 5 Ma). These changes occurred synchronously with variations in alkenone and Mg/Ca-based sea surface temperatures and with hydroclimate and ecosystem shifts in East Asia, highlighting a global climate forcing mechanism. Our modeling experiments additionally demonstrate that pCO2-forced cooling would have altered moisture transfer and pathways and driven extensive aridification in East Asia. We, thus, conclude that the East Asian hydroclimate and ecosystem shift was primarily controlled by pCO2-forced global cooling between 8 and 5 Ma.


Assuntos
Dióxido de Carbono , Ecossistema , Animais , Clima , Ásia Oriental , Temperatura
2.
Nature ; 488(7413): 609-14, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22932385

RESUMO

Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0-3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.


Assuntos
Altitude , Carbonato de Cálcio/análise , Ciclo do Carbono , Água do Mar/química , Atmosfera/química , Dióxido de Carbono/análise , Diatomáceas/metabolismo , Foraminíferos/metabolismo , Sedimentos Geológicos/química , Aquecimento Global/história , Aquecimento Global/estatística & dados numéricos , História do Século XXI , História Antiga , Biologia Marinha , Oxigênio/metabolismo , Oceano Pacífico , Temperatura
3.
Sci Adv ; 9(13): eadf3141, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989371

RESUMO

Arc-continent collision in Southeast Asia during the Neogene may have driven global cooling through chemical weathering of freshly exposed ophiolites resulting in atmospheric CO2 removal. Yet, little is known about the cause-and-effect relationships between erosion and the long-term evolution of tectonics and climate in this region. Here, we present an 8-million-year record of seawater chemistry and sediment provenance from the eastern Indian Ocean, near the outflow of Indonesian Throughflow waters. Using geochemical analyses of foraminiferal shells and grain size-specific detrital fractions, we show that erosion and chemical weathering of ophiolitic rocks markedly increased after 4 million years (Ma), coincident with widespread island emergence and gradual strengthening of Pacific zonal sea-surface temperature gradients. Together with supportive evidence for enhanced mafic weathering at that time from re-analysis of the seawater 87Sr/86Sr curve, this finding suggests that island uplift and hydroclimate change in the western Pacific contributed to maintaining high atmospheric CO2 consumption throughout the late Neogene.

4.
Nat Commun ; 14(1): 2002, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037802

RESUMO

The sensitivity of the Australian Monsoon to changing climate boundary conditions remains controversial due to limited understanding of forcing processes and past variability. Here, we reconstruct austral summer monsoonal discharge and wind-driven winter productivity across the Middle Pleistocene Transition (MPT) in a sediment sequence drilled off NW Australia. We show that monsoonal precipitation and runoff primarily responded to precessional insolation forcing until ~0.95 Ma, but exhibited heightened sensitivity to ice volume and pCO2 related feedbacks following intensification of glacial-interglacial cycles. Our records further suggest that summer monsoon variability at the precessional band was closely tied to the thermal evolution of the Indo-Pacific Warm Pool and strength of the Walker circulation over the past ~1.6 Myr. By contrast, productivity proxy records consistently tracked glacial-interglacial variability, reflecting changing rhythms in polar ice fluctuations and Hadley circulation strength. We conclude that the Australian Monsoon underwent a major re-organization across the MPT and that extratropical feedbacks were instrumental in driving short- and long-term variability.

5.
Nat Commun ; 13(1): 5457, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115856

RESUMO

The role of the tropical Pacific Ocean and its linkages to the southern hemisphere during the last deglacial warming remain highly controversial. Here we explore the evolution of Pacific horizontal and vertical thermal gradients over the past 30 kyr by compiling 340 sea surface and 7 subsurface temperature records, as well as one new ocean heat content record. Our records reveal that La Niña-like conditions dominated during the deglaciation as a result of the more intense warming in the western Pacific warm pool. Both the subsurface temperature and ocean heat content in the warm pool rose earlier than the sea surface temperature, and in phase with South Pacific subsurface temperature and orbital precession, implying that heat exchange between the tropical upper water column and the extratropical Southern Ocean facilitated faster warming in the western Pacific. Our study underscores the key role of the thermal coupling between the warm pool and the Southern Ocean and its relevance for future global warming.


Assuntos
Aquecimento Global , Água do Mar , Oceano Pacífico , Temperatura , Água
6.
Nature ; 438(7067): 483-7, 2005 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-16306989

RESUMO

The processes causing the middle Miocene global cooling, which marked the Earth's final transition into an 'icehouse' climate about 13.9 million years ago (Myr ago), remain enigmatic. Tectonically driven circulation changes and variations in atmospheric carbon dioxide levels have been suggested as driving mechanisms, but the lack of adequately preserved sedimentary successions has made rigorous testing of these hypotheses difficult. Here we present high-resolution climate proxy records, covering the period from 14.7 to 12.7 million years ago, from two complete sediment cores from the northwest and southeast subtropical Pacific Ocean. Using new chronologies through the correlation to the latest orbital model, we find relatively constant, low summer insolation over Antarctica coincident with declining atmospheric carbon dioxide levels at the time of Antarctic ice-sheet expansion and global cooling, suggesting a causal link. We surmise that the thermal isolation of Antarctica played a role in providing sustained long-term climatic boundary conditions propitious for ice-sheet formation. Our data document that Antarctic glaciation was rapid, taking place within two obliquity cycles, and coincided with a striking transition from obliquity to eccentricity as the drivers of climatic change.


Assuntos
Atmosfera/química , Dióxido de Carbono/metabolismo , Clima Frio , Camada de Gelo , Regiões Antárticas , Isótopos de Carbono , História Antiga , Oxigênio/metabolismo , Isótopos de Oxigênio , Oceano Pacífico , Temperatura , Clima Tropical , Movimentos da Água
7.
Nat Commun ; 12(1): 5742, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593821

RESUMO

Late Pleistocene changes in insolation, greenhouse gas concentrations, and ice sheets have different spatially and seasonally modulated climatic fingerprints. By exploring the seasonality of paleoclimate proxy data, we gain deeper insight into the drivers of climate changes. Here, we investigate changes in alkenone-based annual mean and Globigerinoides ruber Mg/Ca-based summer sea surface temperatures in the East China Sea and their linkages to climate forcing over the past 400,000 years. During interglacial-glacial cycles, there are phase differences between annual mean and seasonal (summer and winter) temperatures, which relate to seasonal insolation changes. These phase differences are most evident during interglacials. During glacial terminations, temperature changes were strongly affected by CO2. Early temperature minima, ~20,000 years before glacial terminations, except the last glacial period, coincide with the largest temperature differences between summer and winter, and with the timing of the lowest atmospheric CO2 concentration. These findings imply the need to consider proxy seasonality and seasonal climate variability to estimate climate sensitivity.

8.
Nat Commun ; 12(1): 6935, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836960

RESUMO

Across the Miocene-Pliocene boundary (MPB; 5.3 million years ago, Ma), late Miocene cooling gave way to the early-to-middle Pliocene Warm Period. This transition, across which atmospheric CO2 concentrations increased to levels similar to present, holds potential for deciphering regional climate responses in Asia-currently home to more than half of the world's population- to global climate change. Here we find that CO2-induced MPB warming both increased summer monsoon moisture transport over East Asia, and enhanced aridification over large parts of Central Asia by increasing evaporation, based on integration of our ~1-2-thousand-year (kyr) resolution summer monsoon records from the Chinese Loess Plateau aeolian red clay with existing terrestrial records, land-sea correlations, and climate model simulations. Our results offer palaeoclimate-based support for 'wet-gets-wetter and dry-gets-drier' projections of future regional hydroclimate responses to sustained anthropogenic forcing. Moreover, our high-resolution monsoon records reveal a dynamic response to eccentricity modulation of solar insolation, with predominant 405-kyr and ~100-kyr periodicities between 8.1 and 3.4 Ma.

9.
Science ; 369(6509): 1383-1387, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913105

RESUMO

Much of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories. Four climate states-Hothouse, Warmhouse, Coolhouse, Icehouse-are identified on the basis of their distinctive response to astronomical forcing depending on greenhouse gas concentrations and polar ice sheet volume. Statistical analysis of the nonlinear behavior encoded in our record reveals the key role that polar ice volume plays in the predictability of Cenozoic climate dynamics.

10.
Nat Commun ; 9(1): 1584, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29679005

RESUMO

The late Miocene offers the opportunity to assess the sensitivity of the Earth's climate to orbital forcing and to changing boundary conditions, such as ice volume and greenhouse gas concentrations, on a warmer-than-modern Earth. Here we investigate the relationships between low- and high-latitude climate variability in an extended succession from the subtropical northwestern Pacific Ocean. Our high-resolution benthic isotope record in combination with paired mixed layer isotope and Mg/Ca-derived temperature data reveal that a long-term cooling trend was synchronous with intensification of the Asian winter monsoon and strengthening of the biological pump from ~7 Ma until ~5.5 Ma. The climate shift occurred at the end of a global δ13C decrease, suggesting that changes in the carbon cycle involving the terrestrial and deep ocean carbon reservoirs were instrumental in driving late Miocene climate cooling. The inception of cooler climate conditions culminated with ephemeral Northern Hemisphere glaciations between 6.0 and 5.5 Ma.

11.
Nat Commun ; 6: 5916, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25562847

RESUMO

The evolution of the Australian monsoon in relation to high-latitude temperature fluctuations over the last termination remains highly enigmatic. Here we integrate high-resolution riverine runoff and dust proxy data from X-ray fluorescence scanner measurements in four well-dated sediment cores, forming a NE-SW transect across the Timor Sea. Our records reveal that the development of the Australian monsoon closely followed the deglacial warming history of Antarctica. A minimum in riverine runoff documents dry conditions throughout the region during the Antarctic Cold Reversal (15-12.9 ka). Massive intensification of the monsoon coincided with Southern Hemisphere warming and intensified greenhouse forcing over Australia during the atmospheric CO2 rise at 12.9-10 ka. We relate the earlier onset of the monsoon in the Timor Strait (13.4 ka) to regional changes in landmass exposure during deglacial sea-level rise. A return to dryer conditions occurred between 8.1 and 7.3 ka following the early Holocene runoff maximum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA