Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 284(31): 20452-6, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19525234

RESUMO

CAG repeats form stable hairpin structures, which are believed to be responsible for CAG repeat expansions associated with certain human neurological diseases. Human cells possess an accurate DNA hairpin repair system that prevents expansion of disease-associated CAG repeats. Based on transgenic animal studies, it is suggested that (CAG)(n) expansion is caused by abnormal binding of the MutSbeta mismatch recognition protein to (CAG)(n) hairpins, leading to hijacking mismatch repair function during (CAG)(n) hairpin repair. We demonstrate here that MutSbeta displays identical biochemical and biophysical activities (including ATP-provoked conformational change, ATPase, ATP binding, and ADP binding) when interacting with a (CAG)(n) hairpin and a mismatch. More importantly, our in vitro functional hairpin repair assays reveal that excess MutSbeta does not inhibit (CAG)(n) hairpin repair in HeLa nuclear extracts. Evidence presented here provides a novel view as to whether or not MutSbeta is involved in CAG repeat instability in humans.


Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Bases , Deleção de Genes , Células HeLa , Humanos , Hidrólise , Proteína 3 Homóloga a MutS , Mutagênese Insercional , Ácidos Nucleicos Heteroduplexes/metabolismo , Ligação Proteica
2.
Adv Protein Chem Struct Biol ; 115: 247-295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798934

RESUMO

Malignant melanoma of the skin is the leading cause of death from skin cancer and ranks fifth in cancer incidence among all cancers in the United States. While melanoma mortality has remained steady for the past several decades, melanoma incidence has been increasing, particularly among fair-skinned individuals. According to the American Cancer Society, nearly 10,000 people in the United States will die from melanoma this year. Individuals with dark skin complexion are protected damage generated by UV-light due to the high content of UV-blocking melanin pigment in their epidermis as well as better capacity for melanocytes to cope with UV damage. There is now ample evidence that suggests that the melanocortin 1 receptor (MC1R) is a major melanoma risk factor. Inherited loss-of-function mutations in MC1R are common in melanoma-prone persons, correlating with a less melanized skin complexion and poorer recovery from mutagenic photodamage. We and others are interested in the MC1R signaling pathway in melanocytes, its mechanisms of enhancing genomic stability and pharmacologic opportunities to reduce melanoma risk based on those insights. In this chapter, we review melanoma risk factors, the MC1R signaling pathway, and the relationship between MC1R signaling and DNA repair.


Assuntos
AMP Cíclico/metabolismo , Instabilidade Genômica , Melanócitos/metabolismo , Melanoma/genética , Melanoma/prevenção & controle , Animais , Humanos , Melanoma/metabolismo , Melanoma/patologia
3.
DNA Repair (Amst) ; 52: 70-80, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28237621

RESUMO

Chronic exposure to arsenic, most often through contaminated drinking water, has been linked to several types of cancer in humans, including skin and lung cancer. However, the mechanisms underlying its role in causing cancer are not well understood. There is evidence that exposure to arsenic can enhance the carcinogenicity of UV light in inducing skin cancers and may enhance the carcinogenicity of tobacco smoke in inducing lung cancers. The nucleotide excision repair (NER) pathway removes different types of DNA damage including those produced by UV light and components of tobacco smoke. The aim of the present study was to investigate the effect of sodium arsenite on the NER pathway in human lung fibroblasts (IMR-90 cells) and primary mouse keratinocytes. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts (6-4 PP) and cyclobutane pyrimidine dimers (CPDs). We find a concentration-dependent inhibition of the removal of 6-4 PPs and CPDs in both cell types treated with arsenite. Treatment of both cell types with arsenite resulted in a significant reduction in the abundance of XPC, a protein that is critical for DNA damage recognition in NER. The abundance of RNA expressed from several key NER genes was also significantly reduced by treatment of IMR-90 cells with arsenite. Finally, treatment of IMR-90 cells with MG-132 abrogated the reduction in XPC protein, suggesting an involvement of the proteasome in the reduction of XPC protein produced by treatment of cells with arsenic. The inhibition of NER by arsenic may reflect one mechanism underlying the role of arsenic exposure in enhancing cigarette smoke-induced lung carcinogenesis and UV light-induced skin cancer, and it may provide some insights into the emergence of arsenic trioxide as a chemotherapeutic agent.


Assuntos
Arsenitos/toxicidade , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Dímeros de Pirimidina/metabolismo , Compostos de Sódio/toxicidade , Animais , Arsenitos/farmacologia , DNA/metabolismo , DNA/efeitos da radiação , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Cinética , Camundongos , Compostos de Sódio/farmacologia , Raios Ultravioleta
4.
PLoS One ; 11(7): e0158858, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391141

RESUMO

Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER) pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC), a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6-4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke.


Assuntos
Reparo do DNA , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/patologia , Fibroblastos/patologia , Humanos , Pulmão/patologia , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA