Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Protein Expr Purif ; 210: 106322, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329934

RESUMO

The protein Family with sequence similarity 210 member A (FAM210A) is a mitochondrial inner membrane protein that regulates the protein synthesis of mitochondrial DNA encoded genes. However, how it functions in this process is not well understood. Developing and optimizing a protein purification strategy will facilitate biochemical and structural studies of FAM210A. Here, we developed a method to purify human FAM210A with deleted mitochondrial targeting signal sequence using the MBP-His10 fusion in Escherichia coli. The recombinant FAM210A protein was inserted into the E. coli cell membrane and purified from isolated bacterial cell membranes, followed by a two-step process using Ni-NTA resin-based immobilized-metal affinity chromatography (IMAC) and ion exchange purification. A pulldown assay validated the functionality of purified FAM210A protein interacting with human mitochondrial elongation factor EF-Tu in HEK293T cell lysates. Taken together, this study developed a method for purification of the mitochondrial transmembrane protein FAM210A partially complexed with E.coli derived EF-Tu and provides an opportunity for future potential biochemical and structural studies of recombinant FAM210A protein.


Assuntos
Escherichia coli , Fator Tu de Elongação de Peptídeos , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Células HEK293 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Muscle Nerve ; 59(6): 705-707, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30868637

RESUMO

INTRODUCTION: Ultrasound can potentially identify nerves and guide recording and stimulating electrode placement for nerve conduction studies (NCS). This prospective study was performed to determine whether ultrasound guidance of sural NCS results in higher action potential amplitude, fewer stimuli required, lower stimulus strength required, and less pain experienced. METHODS: Fourteen healthy individuals underwent bilateral sural NCS, both with and without ultrasound guidance. Studies were separated by at least 48 h, and the order of testing was randomly assigned. RESULTS: Ultrasound guidance resulted in significantly fewer stimuli and lower stimuli strength required to obtain supramaximal responses (P < 0.01-0.03). Ultrasound guidance required significantly more time to perform than standard sural NCS (P < 0.01). There was no difference in sural nerve amplitude or pain rating between the 2 groups. DISCUSSION: Neuromuscular ultrasound can be used effectively to guide electrode placement during sural NCS. Muscle Nerve 59:705-707, 2019.


Assuntos
Técnicas de Diagnóstico Neurológico , Condução Nervosa/fisiologia , Nervo Sural/diagnóstico por imagem , Ultrassonografia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Dor Processual , Nervo Sural/fisiologia , Fatores de Tempo
3.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790482

RESUMO

Glutamyl-prolyl-tRNA synthetase (EPRS1), an aminoacyl-tRNA synthetase (ARS) ligating glutamic acid and proline to their corresponding tRNAs, plays an essential role in decoding proline codons during translation elongation. The physiological function of EPRS1 in cardiomyocytes (CMs) and the potential effects of CM-specific loss of EPRS1 remain unknown. Here, we found that heterozygous Eprs1 knockout in CMs does not cause any significant changes in CM hypertrophy induced by pressure overload, while homozygous knockout leads to dilated cardiomyopathy, heart failure, and lethality at around 1 month after Eprs1 deletion. Transcriptomic profiling of early-stage Eprs1 knockout hearts suggests a significantly decreased expression of multiple ion channel genes and an increased gene expression in proapoptotic pathways and integrated stress response. Proteomic analysis shows decreased protein expression of multi-aminoacyl-tRNA synthetase complex components, fatty acid, and branched-chain amino acid metabolic enzymes, as well as a compensatory increase in cytosolic translation machine-related proteins. Immunoblot analysis indicated that multiple proline-rich proteins were reduced at the early stage, which might contribute to cardiac dysfunction of Eprs1 knockout mice. Taken together, this study demonstrates the physiological and molecular outcome of loss-of-function of EPRS1 in vivo and provides valuable insights into the potential side effects on CMs resulting from the EPRS1-targeting therapeutic approach.

4.
Cells ; 13(1)2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38201239

RESUMO

Glutamyl-prolyl-tRNA synthetase (EPRS1), an aminoacyl-tRNA synthetase (ARS) ligating glutamic acid and proline to their corresponding tRNAs, plays an essential role in decoding proline codons during translation elongation. The physiological function of EPRS1 in cardiomyocytes (CMs) and the potential effects of the CM-specific loss of Eprs1 remain unknown. Here, we found that heterozygous Eprs1 knockout in CMs does not cause any significant changes in CM hypertrophy induced by pressure overload, while homozygous knockout leads to dilated cardiomyopathy, heart failure, and lethality at around 1 month after Eprs1 deletion. The transcriptomic profiling of early-stage Eprs1 knockout hearts suggests a significantly decreased expression of multiple ion channel genes and an increased gene expression in proapoptotic pathways and integrated stress response. Proteomic analysis shows decreased protein expression in multi-aminoacyl-tRNA synthetase complex components, fatty acids, and branched-chain amino acid metabolic enzymes, as well as a compensatory increase in cytosolic translation machine-related proteins. Immunoblot analysis indicates that multiple proline-rich proteins were reduced at the early stage, which might contribute to the cardiac dysfunction of Eprs1 knockout mice. Taken together, this study demonstrates the physiological and molecular outcomes of loss-of-function of Eprs1 in vivo and provides valuable insights into the potential side effects on CMs, resulting from the EPRS1-targeting therapeutic approach.


Assuntos
Aminoacil-tRNA Sintetases , Cardiomiopatia Dilatada , Animais , Camundongos , Cardiomiopatia Dilatada/genética , Proteostase , Miócitos Cardíacos , Proteômica , Aminoacil-tRNA Sintetases/genética , Prolina
5.
bioRxiv ; 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37292620

RESUMO

The protein Family with sequence similarity 210 member A (FAM210A) is a mitochondrial inner membrane protein that regulates the protein synthesis of mitochondrial DNA encoded genes. However, how it functions in this process is not well understood. Developing and optimizing a protein purification strategy will facilitate biochemical and structural studies of FAM210A. Here, we developed a method to purify human FAM210A with deleted mitochondrial targeting signal sequence using the MBP-His 10 fusion in Escherichia coli . The recombinant FAM210A protein was inserted into the E. coli cell membrane and purified from isolated bacterial cell membranes, followed by a two-step process using Ni-NTA resin-based immobilized-metal affinity chromatography (IMAC) and ion exchange purification. A pulldown assay validated the functionality of purified FAM210A protein interacting with human mitochondrial elongation factor EF-Tu in HEK293T cell lysates. Taken together, this study developed a method for purification of the mitochondrial transmembrane protein FAM210A partially complexed with E.coli derived EF-Tu and provides an opportunity for future potential biochemical and structural studies of recombinant FAM210A protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA