Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38724283

RESUMO

Understanding the function of the human brain requires determining basic properties of synaptic transmission in human neurons. One of the most fundamental parameters controlling neurotransmitter release is the presynaptic action potential, but its amplitude and duration remain controversial. Presynaptic action potentials have so far been measured with high temporal resolution only in a limited number of vertebrate but not in human neurons. To uncover properties of human presynaptic action potentials, we exploited recently developed tools to generate human glutamatergic neurons by transient expression of Neurogenin 2 (Ngn2) in pluripotent stem cells. During maturation for 3 to 9 weeks of culturing in different established media, the proportion of cells with multiple axon initial segments decreased, while the amount of axonal tau protein and neuronal excitability increased. Super-resolution microscopy revealed the alignment of the pre- and postsynaptic proteins, Bassoon and Homer. Synaptic transmission was surprisingly reliable at frequencies of 20, 50, and 100 Hz. The synchronicity of synaptic transmission during high-frequency transmission increased during 9 weeks of neuronal maturation. To analyze the mechanisms of synchronous high-frequency glutamate release, we developed direct presynaptic patch-clamp recordings from human neurons. The presynaptic action potentials had large overshoots to ∼25 mV and short durations of ∼0.5 ms. Our findings show that Ngn2-induced neurons represent an elegant model system allowing for functional, structural, and molecular analyses of glutamatergic synaptic transmission with high spatiotemporal resolution in human neurons. Furthermore, our data predict that glutamatergic transmission is mediated by large and rapid presynaptic action potentials in the human brain.


Assuntos
Potenciais de Ação , Células-Tronco Pluripotentes Induzidas , Neurônios , Terminações Pré-Sinápticas , Sinapses , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Transmissão Sináptica/fisiologia , Células Cultivadas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/fisiologia
2.
Cell ; 143(4): 564-78, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21074048

RESUMO

Polyglutamylation is a posttranslational modification that generates glutamate side chains on tubulins and other proteins. Although this modification has been shown to be reversible, little is known about the enzymes catalyzing deglutamylation. Here we describe the enzymatic mechanism of protein deglutamylation by members of the cytosolic carboxypeptidase (CCP) family. Three enzymes (CCP1, CCP4, and CCP6) catalyze the shortening of polyglutamate chains and a fourth (CCP5) specifically removes the branching point glutamates. In addition, CCP1, CCP4, and CCP6 also remove gene-encoded glutamates from the carboxyl termini of proteins. Accordingly, we show that these enzymes convert detyrosinated tubulin into Δ2-tubulin and also modify other substrates, including myosin light chain kinase 1. We further analyze Purkinje cell degeneration (pcd) mice that lack functional CCP1 and show that microtubule hyperglutamylation is directly linked to neurodegeneration. Taken together, our results reveal that controlling the length of the polyglutamate side chains on tubulin is critical for neuronal survival.


Assuntos
Carboxipeptidases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Degeneração Neural/metabolismo , Ácido Poliglutâmico/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular , Cerebelo/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Bulbo Olfatório/patologia , Alinhamento de Sequência , Tubulina (Proteína)/metabolismo
3.
Mol Psychiatry ; 27(7): 3010-3023, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393558

RESUMO

The microtubule-associated protein tau plays a central role in tauopathies such as Alzheimer's disease (AD). The exact molecular mechanisms underlying tau toxicity are unclear, but aging is irrefutably the biggest risk factor. This raises the question of how cellular senescence affects the function of tau as a microtubule regulator. Here we report that the proportion of tau that is proteolytically cleaved at the caspase-3 site (TauC3) doubles in the hippocampus of senescent mice. TauC3 is also elevated in AD patients. Through quantitative live-cell imaging, we show that TauC3 has a drastically reduced dynamics of its microtubule interaction. Single-molecule tracking of tau confirmed that TauC3 has a longer residence time on axonal microtubules. The reduced dynamics of the TauC3-microtubule interaction correlated with a decreased transport of mitochondria, a reduced processivity of APP-vesicle transport and an induction of region-specific dendritic atrophy in CA1 neurons of the hippocampus. The microtubule-targeting drug Epothilone D normalized the interaction of TauC3 with microtubules and modulated the transport of APP-vesicles dependent on the presence of overexpressed human tau. The results indicate a novel toxic gain of function, in which a post-translational modification of tau changes the dynamics of the tau-microtubule interaction and thus leads to axonal transport defects and neuronal degeneration. The data also introduce microtubule-targeting drugs as pharmacological modifiers of the tau-microtubule interaction with the potential to restore the physiological interaction of pathologically altered tau with microtubules.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/metabolismo , Animais , Transporte Axonal , Caspases/metabolismo , Mutação com Ganho de Função , Humanos , Camundongos , Microtúbulos/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo
4.
Eur J Neurosci ; 53(12): 3889-3904, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32737917

RESUMO

Selected types of neurons in the central nervous system are associated with a specialized form of extracellular matrix. These so-called perineuronal nets (PNs) are supramolecular structures surrounding neuronal somata, proximal dendrites and axon initial segments. PNs are involved in the regulation of plasticity and synaptic physiology. In addition, PNs were proposed to carry neuroprotective functions as PN-ensheathed neurons are mostly spared of tau pathology in brains of Alzheimer patients. Recently, the neuroprotective action of PNs was confirmed experimentally, demonstrating (i) that mainly aggrecan mediates the neuroprotective function of PNs and (ii) that aggrecan seems to generate an external shielding preventing the internalization of pathological forms of tau. In the present study, we aimed at extending these findings and hypothesized that aggrecan further provides an intracellular protection by preventing mutation-triggered formation of pathological forms of tau. We used crossbreds of TauP301L mice and heterozygous aggrecan mice which are characterized by spontaneous deletion of the aggrecan allele. We analysed the extent of tau pathology in dependence of aggrecan protein amount by applying immunohistochemistry, Western blotting and ELISA. The results clearly indicate that aggrecan has no significant impact on tau aggregation in the brainstem of our mouse model. Still, reduced aggrecan levels were accompanied by increased levels of tau protein and reduced number of Tau-1-positive neurons, which indicate an increase in phosphorylation of tau. In conclusion, these data demonstrate a correlation between aggrecan and P301L mutation-triggered tau expression and phosphorylation in our bigenic mouse model.


Assuntos
Neurônios , Proteínas tau , Agrecanas/genética , Agrecanas/metabolismo , Animais , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Fosforilação , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Acta Neuropathol ; 142(3): 399-421, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34309760

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is neuropathologically characterized by degeneration of dopaminergic neurons of the substantia nigra (SN) and formation of Lewy bodies and Lewy neurites composed of aggregated α-synuclein. Proteolysis of α-synuclein by matrix metalloproteinases was shown to facilitate its aggregation and to affect cell viability. One of the proteolysed fragments, Gln79-α-synuclein, possesses a glutamine residue at its N-terminus. We argue that glutaminyl cyclase (QC) may catalyze the pyroglutamate (pGlu)79-α-synuclein formation and, thereby, contribute to enhanced aggregation and compromised degradation of α-synuclein in human synucleinopathies. Here, the kinetic characteristics of Gln79-α-synuclein conversion into the pGlu-form by QC are shown using enzymatic assays and mass spectrometry. Thioflavin T assays and electron microscopy demonstrated a decreased potential of pGlu79-α-synuclein to form fibrils. However, size exclusion chromatography and cell viability assays revealed an increased propensity of pGlu79-α-synuclein to form oligomeric aggregates with high neurotoxicity. In brains of wild-type mice, QC and α-synuclein were co-expressed by dopaminergic SN neurons. Using a specific antibody against the pGlu-modified neo-epitope of α-synuclein, pGlu79-α-synuclein aggregates were detected in association with QC in brains of two transgenic mouse lines with human α-synuclein overexpression. In human brain samples of PD and dementia with Lewy body subjects, pGlu79-α-synuclein was shown to be present in SN neurons, in a number of Lewy bodies and in dystrophic neurites. Importantly, there was a spatial co-occurrence of pGlu79-α-synuclein with the enzyme QC in the human SN complex and a defined association of QC with neuropathological structures. We conclude that QC catalyzes the formation of oligomer-prone pGlu79-α-synuclein in human synucleinopathies, which may-in analogy to pGlu-Aß peptides in Alzheimer's disease-act as a seed for pathogenic protein aggregation.


Assuntos
Aminoaciltransferases/metabolismo , Sinucleinopatias/genética , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Sobrevivência Celular , Cromatografia em Gel , Neurônios Dopaminérgicos/metabolismo , Glutamina/metabolismo , Humanos , Cinética , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Camundongos , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Processamento de Proteína Pós-Traducional , Sambucus nigra/citologia , Sambucus nigra/metabolismo
6.
Neuropathology ; 41(5): 366-370, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34415062

RESUMO

Vascular calcification is a common phenomenon in the elderly, predominantly appearing in the basal ganglia and in the lamina circumvoluta medullaris of the hippocampus. Calcifications are not an inherent feature of Alzheimer's disease. On the other hand, a rare presenile type of dementia with symmetrical Fahr-type calcifications and numerous neurofibrillary tangles without senile plaques has been described by Kosaka in 1994 and was termed "diffuse neurofibrillary tangles with calcification" (DNTC). We here report a case of Alzheimer's disease with calcifications both in the basal ganglia and in the lamina circumvoluta medullaris of the hippocampus, differing from DNTC by the presence of senile plaques. The calcifications in the hippocampus were not only vascular in nature but also covered amyloid-ß- and phosphorylated tau-positive plaque-like structures that were linearly arranged along the dentate fascia in the CA1 sector, an unusual finding of pathogenetic interest.


Assuntos
Doença de Alzheimer , Calcinose , Idoso , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides , Humanos , Emaranhados Neurofibrilares , Placa Amiloide
7.
Brain ; 142(11): 3351-3359, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504246

RESUMO

Using trio exome sequencing, we identified de novo heterozygous missense variants in PAK1 in four unrelated individuals with intellectual disability, macrocephaly and seizures. PAK1 encodes the p21-activated kinase, a major driver of neuronal development in humans and other organisms. In normal neurons, PAK1 dimers reside in a trans-inhibited conformation, where each autoinhibitory domain covers the kinase domain of the other monomer. Upon GTPase binding via CDC42 or RAC1, the PAK1 dimers dissociate and become activated. All identified variants are located within or close to the autoinhibitory switch domain that is necessary for trans-inhibition of resting PAK1 dimers. Protein modelling supports a model of reduced ability of regular autoinhibition, suggesting a gain of function mechanism for the identified missense variants. Alleviated dissociation into monomers, autophosphorylation and activation of PAK1 influences the actin dynamics of neurite outgrowth. Based on our clinical and genetic data, as well as the role of PAK1 in brain development, we suggest that gain of function pathogenic de novo missense variants in PAK1 lead to moderate-to-severe intellectual disability, macrocephaly caused by the presence of megalencephaly and ventriculomegaly, (febrile) seizures and autism-like behaviour.


Assuntos
Deficiência Intelectual/genética , Megalencefalia/genética , Convulsões/genética , Quinases Ativadas por p21/genética , Actinas/metabolismo , Adolescente , Transtorno Autístico/genética , Criança , Pré-Escolar , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Deficiência Intelectual/psicologia , Masculino , Megalencefalia/psicologia , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Fosforilação , Convulsões/psicologia , Transdução de Sinais/genética , Sequenciamento do Exoma , Adulto Jovem , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/química , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Molecules ; 23(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213139

RESUMO

The current number of drugs available for the treatment of Alzheimer's disease (AD) is strongly limited and their benefit for therapy is given only in the early state of the disease. An effective therapy should affect those processes which mainly contribute to the neuronal decay. There have been many approaches for a reduction of toxic Aß peptides which mostly failed to halt cognitive deterioration in patients. The formation of neurofibrillary tangles (NFT) and its precursor tau oligomers have been suggested as main cause of neuronal degeneration because of a direct correlation of their density to the degree of dementia. Reducing of tau aggregation may be a viable approach for the treatment of AD. NFT consist of hyperphosphorylated tau protein and tau hyperphosphorylation reduces microtubule binding. Several protein kinases are discussed to be involved in tau hyperphosphorylation. We developed novel inhibitors of three protein kinases (gsk-3ß, cdk5, and cdk1) and discussed their activity in relation to tau phosphorylation and on tau⁻tau interaction as a nucleation stage of a tau aggregation in cells. Strongest effects were observed for those inhibitors with effects on all the three kinases with emphasis on gsk-3ß in nanomolar ranges.


Assuntos
Benzofuranos/síntese química , Inibidores de Proteínas Quinases/síntese química , Piridinas/síntese química , Proteínas tau/metabolismo , Animais , Benzofuranos/química , Benzofuranos/farmacologia , Proteína Quinase CDC2/metabolismo , Células COS , Linhagem Celular , Chlorocebus aethiops , Quinase 4 Dependente de Ciclina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Piridinas/química , Piridinas/farmacologia , Células Sf9 , Proteínas tau/química
9.
Hippocampus ; 26(3): 301-18, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26332578

RESUMO

The microtubule-associated protein tau, in its hyperphosphorylated form, is the major component of paired helical filaments and other aggregates in neurodegenerative disorders commonly referred to as "tauopathies". Recent evidence, however, indicates that mislocalization of hyperphosphorylated tau to subsynaptic sites leads to synaptic impairment and cognitive decline even long before formation of tau aggregates and neurodegeneration occur. A similar, but reversible hyperphosphorylation of tau occurs under physiologically controlled conditions during hibernation. Here, we study the hibernating Golden hamster (Syrian hamster, Mesocricetus auratus). A transient spine reduction was observed in the hippocampus, especially on apical dendrites of hippocampal CA3 pyramidal cells, but not on their basal dendrites. This distribution of structural synaptic regression was correlated to the distribution of phosphorylated tau, which was highly abundant in apical dendrites but hardly detectable in basal dendrites. Surprisingly, hippocampal memory assessed by a labyrinth maze was not affected by hibernation. The present study suggests a role for soluble hyperphosphorylated tau in the process of reversible synaptic regression, which does not lead to memory impairment during hibernation. We hypothesize that tau phosphorylation associated spine regression might mainly affect unstable/dynamic spines while sparing established/stable spines.


Assuntos
Espinhas Dendríticas/metabolismo , Hibernação/fisiologia , Hipocampo/citologia , Memória/fisiologia , Neurônios/ultraestrutura , Proteínas tau/metabolismo , Animais , Nível de Alerta/fisiologia , Cricetinae , Proteína 4 Homóloga a Disks-Large , Feminino , Hipocampo/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Aprendizagem em Labirinto , Proteínas de Membrana/metabolismo , Mesocricetus/fisiologia , Atividade Motora , Alinhamento de Sequência , Sinapses/fisiologia , Fatores de Tempo , Torpor/fisiologia
10.
Biochim Biophys Acta ; 1842(9): 1527-38, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24905733

RESUMO

Tau is the major microtubule-associated protein in neurons involved in microtubule stabilization in the axonal compartment. Changes in tau gene expression, alternative splicing and posttranslational modification regulate tau function and in tauopathies can result in tau mislocalization and dysfunction, causing tau aggregation and cell death. To uncover proteins involved in the development of tauopathies, a yeast two-hybrid system was used to screen for tau-interacting proteins. We show that axotrophin/MARCH7, a RING-variant domain containing protein with similarity to E3 ubiquitin ligases interacts with tau. We defined the tau binding domain to amino acids 552-682 of axotrophin comprising the RING-variant domain. Co-immunoprecipitation and co-localization confirmed the specificity of the interaction. Intracellular localization of axotrophin is determined by an N-terminal nuclear targeting signal and a C-terminal nuclear export signal. In AD brain nuclear localization is lost and axotrophin is rather associated with neurofibrillary tangles. We find here that tau becomes mono-ubiquitinated by recombinant tau-interacting RING-variant domain, which diminishes its microtubule-binding. In vitro ubiquitination of four-repeat tau results in incorporation of up to four ubiquitin molecules compared to two molecules in three-repeat tau. In summary, we present a novel tau modification occurring preferentially on 4-repeat tau protein which modifies microtubule-binding and may impact on the pathogenesis of tauopathies.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Microtúbulos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteínas tau/fisiologia , Idoso , Doença de Alzheimer/patologia , Animais , Western Blotting , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Camundongos , Camundongos Knockout , Ligação Proteica , Proteínas Recombinantes/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitinação
11.
J Neural Transm (Vienna) ; 122(4): 531-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25480630

RESUMO

Sporadic Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder of unknown cause characterized by fibrillar accumulation of the Aß-peptide and aggregates of the microtubule-associated protein tau in a hyperphosphorylated form. Already at preclinical stages, AD is characterized by hypometabolic states which are a good predictor of cognitive decline. Here, we summarize recent evidence derived from the study of hibernating animals that brain hypometabolism can trigger PHF-like hyperphosphorylation of tau. We put forward the concept that particular types of neurons respond to a hypometabolic state with an elevated phosphorylation of tau protein which represents a physiological mechanism involved in regulating synaptic gain. If, in contrast to hibernation, the hypometabolic state is not terminated after a definite time but rather persists and progresses, the elevated phosphorylation of tau protein endures and the protective reaction associated with it might turn into a pathological cascade leading to neurodegeneration.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Hibernação/fisiologia , Humanos , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Sinapses/metabolismo , Sinapses/patologia
12.
Neuropathol Appl Neurobiol ; 40(7): 815-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24964035

RESUMO

AIMS: Neurodegeneration in Alzheimer's disease (AD) is characterized by pathological protein aggregates and inadequate activation of cell cycle regulating proteins. Recently, Smad proteins were identified to control the expression of AD relevant proteins such as APP, CDK4 and CDK inhibitors, both critical regulators of cell cycle activation. This might indicate a central role for Smads in AD pathology where they show a substantial deficiency and disturbed subcellular distribution in neurones. Still, the mechanisms driving relocation and decrease of neuronal Smad in AD are not well understood. However, Pin1, a peptidyl-prolyl-cis/trans-isomerase, which allows isomerization of tau protein, was recently identified also controlling the fate of Smads. Here we analyse a possible role of Pin1 for Smad disturbances in AD. METHODS: Multiple immunofluorescence labelling and confocal laser-scanning microscopy were performed to examine the localization of Smad and Pin1 in human control and AD hippocampi. Ectopic Pin1 expression in neuronal cell cultures combined with Western blot analysis and immunoprecipitation allowed studying Smad level and subcellular distribution. Luciferase reporter assays, electromobility shift, RNAi-technique and qRT-PCR revealed a potential transcriptional impact of Smad on Pin1 promoter. RESULTS: We report on a colocalization of phosphorylated Smad in AD with Pin1. Pin1 does not only affect Smad phosphorylation and stability but also regulates subcellular localization of Smad2 and supports its binding to phosphorylated tau protein. Smads, in turn, exert a negative feed-back regulation on Pin1. CONCLUSION: Our data suggest both Smad proteins and Pin1 to be elements of a vicious circle with potential pathogenetic significance in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas Smad/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Peptidilprolil Isomerase de Interação com NIMA , Fosforilação , Proteólise
13.
Adv Biol (Weinh) ; : e2400243, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377190

RESUMO

People all over the world, independent of their culture or background, touch their faces up to 800 times per day. No other part of the body is touched as often as the face. Forehead, nose, and chin-the so-called T-zone of the face-are touched particularly frequently during spontaneous facial self-touches (sFST). It is hypothesized that there is a relationship between the density of mechanoreceptors (inferred from facial hair distribution) and the frequency of spontaneous self-touching. In order to indirectly measure the density of mechanoreceptors (cutaneous end organ complexes), the number of vellus and terminal hairs at 40 different measuring points on the face of 30 (15f/15m) healthy volunteers in study A is determined. In study B, the frequency of sFST at the same 40 measuring points in 66 (32f/34m) healthy persons is determined. Study A reveals that the number of facial hairs-in both sexes-is higher in the T-zone than in other areas of the face. Study B reveals that the T-zone is touched more frequently than other areas of the face. Skin areas of the face with a higher number of vellus hairs (and presumably higher innervation density) are touched particularly frequently during sFST.

14.
J Biol Chem ; 287(52): 43223-33, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23129775

RESUMO

The microtubule-associated protein Tau is mainly expressed in neurons, where it binds and stabilizes microtubules. In Alzheimer disease and other tauopathies, Tau protein has a reduced affinity toward microtubules. As a consequence, Tau protein detaches from microtubules and eventually aggregates into ß-sheet-containing filaments. The fibrillization of monomeric Tau to filaments is a multistep process that involves the formation of various aggregates, including spherical and protofibrillar oligomers. Previous concepts, primarily developed for Aß and α-synuclein, propose these oligomeric intermediates as the primary cytotoxic species mediating their deleterious effects through membrane permeabilization. In the present study, we thus analyzed whether this concept can also be applied to Tau protein. To this end, viability and membrane integrity were assessed on SH-SY5Y neuroblastoma cells and artificial phospholipid vesicles, treated with Tau monomers, Tau aggregation intermediates, or Tau fibrils. Our findings suggest that oligomeric Tau aggregation intermediates are the most toxic compounds of Tau fibrillogenesis, which effectively decrease cell viability and increase phospholipid vesicle leakage. Our data integrate Tau protein into the class of amyloidogenic proteins and enforce the hypothesis of a common toxicity-mediating mechanism for amyloidogenic proteins.


Assuntos
Amiloide/metabolismo , Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Proteínas tau/metabolismo , Amiloide/química , Amiloide/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/patologia , Sobrevivência Celular , Humanos , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/química , Proteínas tau/genética
15.
Alzheimers Res Ther ; 15(1): 16, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641439

RESUMO

BACKGROUND: Hyperphosphorylation and intraneuronal aggregation of the microtubule-associated protein tau is a major pathological hallmark of Alzheimer's disease (AD) brain. Of special interest is the effect of cerebral amyloid beta deposition, the second main hallmark of AD, on human tau pathology. Therefore, studying the influence of cerebral amyloidosis on human tau in a novel human tau knock-in (htau-KI) mouse model could help to reveal new details on their interplay. METHODS: We studied the effects of a novel human htau-KI under fast-progressing amyloidosis in 5xFAD mice in terms of correlation of gene expression data with human brain regions, development of Alzheimer's-like pathology, synaptic transmission, and behavior. RESULTS: The main findings are an interaction of human beta-amyloid and human tau in crossbred 5xFADxhtau-KI observed at transcriptional level and corroborated by electrophysiology and histopathology. The comparison of gene expression data of the 5xFADxhtau-KI mouse model to 5xFAD, control mice and to human AD patients revealed conspicuous changes in pathways related to mitochondria biology, extracellular matrix, and immune function. These changes were accompanied by plaque-associated MC1-positive pathological tau that required the htau-KI background. LTP deficits were noted in 5xFAD and htau-KI mice in contrast to signs of rescue in 5xFADxhtau-KI mice. Increased frequencies of miniature EPSCs and miniature IPSCs indicated an upregulated presynaptic function in 5xFADxhtau-KI. CONCLUSION: In summary, the multiple interactions observed between knocked-in human tau and the 5xFAD-driven progressing amyloidosis have important implications for future model development in AD.


Assuntos
Doença de Alzheimer , Amiloidose , Camundongos , Humanos , Animais , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Doença de Alzheimer/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
16.
Bioorg Med Chem Lett ; 22(22): 6914-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23039927

RESUMO

Alzheimer disease (AD) turned out to be a multifactorial process leading to neuronal decay. So far merely single target structures which attribute to the AD progression have been considered to develop specific drugs. However, such drug developments have been disappointing in clinical stages. Multitargeting of more than one target structure determines recent studies of developing novel lead compounds. Protein kinases have been identified to contribute to the neuronal decay with CDK1, GSK-3ß and CDK5/p25 being involved in a pathological tau protein hyperphosphorylation. We discovered novel lead structures of the dihydroxy-1-aza-9-oxafluorene type with nanomolar activities against CDK1, GSK-3ß and CDK5/p25. Structure-activity relationships (SAR) of the protein kinase inhibition are discussed within our first compound series. One nanomolar active compound profiled as selective protein kinase inhibitor. Bioanalysis of a harmless cellular toxicity and of the inhibition of tau protein phosphorylation qualifies the compound for further studies.


Assuntos
Doença de Alzheimer/enzimologia , Compostos Aza/química , Fluorenos/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Fluorenos/síntese química , Fluorenos/toxicidade , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/toxicidade , Proteínas Quinases/metabolismo , Relação Estrutura-Atividade , Proteínas tau/metabolismo
17.
Biomolecules ; 12(4)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35454094

RESUMO

Tau mutations promote the formation of tau oligomers and filaments, which are neuropathological signs of several tau-associated dementias. Types of neurons in the CNS are spared of tau pathology and are surrounded by a specialized form of extracellular matrix; called perineuronal nets (PNs). Aggrecan, the major PN proteoglycans, is suggested to mediate PNs neuroprotective function by forming an external shield preventing the internalization of misfolded tau. We recently demonstrated a correlation between aggrecan amount and the expression and phosphorylation of tau in a TauP310L-acan mouse model, generated by crossbreeding heterozygous aggrecan mice with a significant reduction of aggrecan and homozygous TauP301L mice. Neurodegenerative processes have been associated with changes of PN structure and protein signature. In this study, we hypothesized that the structure and protein expression of PNs in this TauP310L-acan mouse is regulated by tau. Immunohistochemical and biochemical analyses demonstrate that protein levels of PN components differ between TauP301LHET-acanWT and TauP301LHET-acanHET mice, accompanied by changes in the expression of protein phosphatase 2 A. In addition, tau can modulate PN components such as brevican. Co-immunoprecipitation experiments revealed a physical connection between PN components and tau. These data demonstrate a complex, mutual interrelation of tau and the proteoglycans of the PN.


Assuntos
Matriz Extracelular , Proteínas tau , Agrecanas/genética , Animais , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Camundongos , Neurônios/metabolismo , Proteoglicanas/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
18.
Future Med Chem ; 14(16): 1175-1186, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35920260

RESUMO

Background: Alzheimer's disease (AD) drugs in therapy are limited to acetylcholine esterase inhibitors and memantine. Newly developed drugs against a single target structure have an insufficient effect on symptomatic AD patients. Results: Novel aromatically anellated pyridofuranes have been evaluated for inhibition of AD-relevant protein kinases cdk1, cdk2, gsk-3b and Fyn. Best activities have been found for naphthopyridofuranes with a hydroxyl function as part of the 5-substituent and a hydrogen or halogen substituent in the 8-position. Best results in nanomolar ranges were found for benzopyridofuranes with a 6-hydroxy and a 3-alkoxy substitution or an exclusive 6-alkoxy substituent. Conclusion: First lead compounds were identified inhibiting two to three kinases in nanomolar ranges to be qualified as an innovative approach for AD multitargeting.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Humanos , Proteínas Quinases , Proteínas tau/metabolismo
19.
Eur J Neurosci ; 29(6): 1096-107, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19302146

RESUMO

Cyclins and cyclin-dependent kinases (Cdks) are the main components that control the orderly progression through cell cycle. In the mature nervous system, terminally differentiated neurons are permanently withdrawn from cell cycle, as mitotic quiescence is essential for the functional stability of the complexly wired neuronal system. Recently, we characterized the expression and colocalization of cyclins and Cdks in terminally differentiated pyramidal neurons. The functional impact of the expression of cell cycle-related proteins in differentiated neurons, however, has not been elucidated yet. In the present study, we show by immunoelectron microscopy and immunobiochemical methods an association of cyclins and Cdks with the microtubule network. Cyclins D, E, A and B as well as Cdks 1, 2 and 4 were also found to be associated with the microtubule-associated protein tau. Cyclin/Cdk complexes, in addition, exhibit kinase activity towards tau. In vitro, downregulation of cyclins and Cdks by a siRNA approach and by pharmacological inhibition promotes neurite extension. Taken together, these results indicate that the expression of cell cycle-related proteins in terminal differentiated neurons is associated with physiological functions beyond cell cycle control that might be involved in microtubule-based mechanisms of neuroplasticity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclinas/metabolismo , Microtúbulos/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/ultraestrutura , Proteínas tau/metabolismo , Animais , Bovinos , Proteínas de Ciclo Celular/classificação , Células Cultivadas , Quinases Ciclina-Dependentes , Ciclinas/classificação , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Imunoprecipitação/métodos , Masculino , Camundongos , Camundongos Endogâmicos , Microscopia Imunoeletrônica/métodos , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/fisiologia , Ligação Proteica/fisiologia , RNA Interferente Pequeno/metabolismo , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo , Fatores de Tempo , Transfecção , Tubulina (Proteína)/metabolismo
20.
Front Neuroanat ; 13: 69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379517

RESUMO

Reversible formation of PHF-like phosphorylated tau, an early feature of Alzheimer's disease (AD) was previously shown to occur in torpor during hibernation in the Golden hamster (Syrian hamster, Mesocricetus auratus). Here, we tackled the question to what extent hibernating Golden hamsters can serve as a model for the early stage of AD. During early AD, anosmia, the loss of olfactory function, is a common and typical feature. We, thus, investigated tau phosphorylation, synaptic plasticity and behavioral physiology of the olfactory system during hibernation. Tau was phosphorylated on several AD-relevant epitopes, and distribution of PHF-like phosphorylated tau in the olfactory bulb was quite similar to what is seen in AD. Tau phosphorylation was not associated with a destabilization of microtubules and did not lead to fibril formation. Previously, we observed a transient spine reduction in pyramidal cells in the hippocampus, which is correlated with the distribution of phosphorylated tau. Here we show that granule cells in the olfactory bulb are devoid of phosphorylated tau and maintain their spines number during torpor. No reduction of synaptic proteins was observed. However, hibernation did impair the recall performance in a two-odor discrimination task. We conclude that hibernation is associated with a specific olfactory memory deficit, which might not be attributed to the formation of PHF-like phosphorylated tau within the olfactory bulb. We discuss a possible involvement of modulatory input provided by cholinergic neurons in the basal forebrain, which are affected by hibernation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA