Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 144: 107113, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232685

RESUMO

Liver fibrosis is an abnormal wound-healing response to liver injuries. It can lead to liver cirrhosis, and even liver cancer and liver failure. There is a lack of treatment for liver fibrosis and it is of great importance to develop anti-fibrotic drugs. A pivotal event in the process of developing liver fibrosis is the activation of hepatic stellate cells (HSCs), in which the nuclear receptor Nur77 plays a crucial role. This study aimed to develop novel anti-fibrotic agents with Nur77 as the drug target by modifying the structure of THPN, a Nur77-binding and anti-melanoma compound. Specifically, a series of para-positioned 3,4,5-trisubstituted benzene ring compounds with long-chain backbone were generated and tested for anti-fibrotic activity. Among these compounds, compound A8 was with the most potent and Nur77-dependent inhibitory activity against TGF-ß1-induced activation of HSCs. In a crystal structure analysis, compound A8 bound Nur77 in a peg-in-hole mode as THPN did but adopted a different conformation that could interfere the Nur77 interaction with AKT, which was previous shown to be important for an anti-fibrotic activity. In a cell-based assay, compound A8 indeed impeded the interaction between Nur77 and AKT leading to the stabilization of Nur77 without the activation of AKT. In a mouse model, compound A8 effectively suppressed the activation of AKT signaling pathway and up-regulated the cellular level of Nur77 to attenuate the HSCs activation and ameliorate liver fibrosis with no significant toxic side effects. Collectively, this work demonstrated that Nur77-targeting compound A8 is a promising anti-fibrotic drug candidate.


Assuntos
Benzeno , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Fibrose , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo
2.
Bioorg Chem ; 140: 106795, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657195

RESUMO

Hepatic fibrosis remains a great challenge clinically. The orphan nuclear receptor Nur77 is recently suggested as the critical regulator of transforming growth factor-ß (TGF-ß) signaling, which plays a central role in multi-organic fibrosis. Herein, we optimized our previously reported Nur77-targeted compound 9 h for attempting to develop effective and safe anti-hepatic fibrosis agents. The critical pharmacophore scaffold of pyridine-carbonyl-hydrazine-1-carboxamide was retained, while the naphthalene ring was replaced with an aromatic ring containing pyridyl or indole groups. Four series of derivatives were thus generated, among which the compound 16f had excellent binding activity toward Nur77-LBD (KD = 470 nM) with the best inhibitory activity against the TGF- ß 1 activation of hepatic stellate cells (HSCs) and low cytotoxicity to normal mice liver AML-12 cells (IC50 > 80 µM). In mice, 16f displayed potent activity against CCl4-induced liver fibrosis with improved liver function. Mechanistically, 16f-mediated inactivation of HSC and suppression of liver fibrosis were associated with its enhancement of autophagic flux in a Nur77-dependent manner. Together, 16f was identified as a potential anti-liver fibrosis agent. Our study suggests that Nur77 may serve as a critical anti-hepatic fibrosis target.


Assuntos
Anticonvulsivantes , Cirrose Hepática , Animais , Camundongos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Antifibróticos , Autofagia , Células Estreladas do Fígado
3.
Proc Natl Acad Sci U S A ; 117(44): 27412-27422, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087562

RESUMO

Nuclear receptor Nur77 participates in multiple metabolic regulations and plays paradoxical roles in tumorigeneses. Herein, we demonstrated that the knockout of Nur77 stimulated mammary tumor development in two mouse models, which would be reversed by a specific reexpression of Nur77 in mammary tissues. Mechanistically, Nur77 interacted and recruited corepressors, the SWI/SNF complex, to the promoters of CD36 and FABP4 to suppress their transcriptions, which hampered the fatty acid uptake, leading to the inhibition of cell proliferation. Peroxisome proliferator-activated receptor-γ (PPARγ) played an antagonistic role in this process through binding to Nur77 to facilitate ubiquitin ligase Trim13-mediated ubiquitination and degradation of Nur77. Cocrystallographic and functional analysis revealed that Csn-B, a Nur77-targeting compound, promoted the formation of Nur77 homodimer to prevent PPARγ binding by steric hindrance, thereby strengthening the Nur77's inhibitory role in breast cancer. Therefore, our study reveals a regulatory function of Nur77 in breast cancer via impeding fatty acid uptake.


Assuntos
Neoplasias da Mama/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , PPAR gama/metabolismo , Fenilacetatos/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Ácidos Graxos/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Metabolismo dos Lipídeos/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Camundongos , Pessoa de Meia-Idade , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/agonistas , PPAR gama/agonistas , Cultura Primária de Células , Prognóstico , Proteólise/efeitos dos fármacos , Análise Serial de Tecidos , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação/efeitos dos fármacos
4.
Fish Shellfish Immunol ; 128: 474-483, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35988710

RESUMO

The freshwater amphibious snail Oncomelania hupensis is the unique intermediate host of Schistosoma japonicum, but little attention has been paid to the interaction between the two. In snails, the production of reactive oxygen species (ROS) by hemocytes has been shown to be vital for snail immune defense against schistosome infection. However, excessive ROS accumulation could lead to oxidative damage, requiring the antioxidant system for maintaining the cellular redox homeostasis. Previously we identified a thioredoxin-related protein of 14 kDa from O. hupensis (OhTRP14), and showed that it was involved in the scavenging of ROS in circulating hemocytes. Here, we confirmed that OhTRP14 plays a potential role in the snail host response to parasite challenge and determined the crystal structures of OhTRP14 in two different states (oxidized and transition state). The overall structure revealed a typical Trx fold and is similar to that of human TRP14 (hTRP14), but there were significant structural differences between the two states. Noticeably, there was a different pair of thiol groups from Cys30 and Cys44 in the transition state of OhTRP14, were with the similar separation of 2.9 Å as that (2.6 Å) between Cys41 and Cys44, but in a different orientation, suggesting that the Cys30 is likely to function as an important molecular switch involved in the oxidoreductase activity of OhTRP14. Comparative studies between OhTRP14 and hTRP14 by analyzing the surface characteristics, charge distribution and oxidoreductase activity toward insulin demonstrated they might have similar substrates. The results are expected to provide structural insights into the redox regulation of OhTRP14 and contribute to better understanding of TRP14 family. DATA DEPOSITION: The atomic coordinates of the structure and the structure factors were deposited in Protein Data Bank with PDB ID codes 7XQ3 and 7XPW.


Assuntos
Insulinas , Parasitos , Animais , Antioxidantes , China , Humanos , Oxirredução , Oxirredutases , Espécies Reativas de Oxigênio , Caramujos , Compostos de Sulfidrila , Tiorredoxinas/genética
5.
Eur J Pharmacol ; 966: 176270, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38096970

RESUMO

AIM: Liver fibrosis remains a great challenge in the world. Spinosin (SPI), a natural flavonoid-C-glycoside, possesses various pharmacological activities including anti-inflammatory and anti-myocardial fibrosis effects. In this study, we investigate whether SPI can be a potential lead for the treatment of liver fibrosis and explore whether the orphan nuclear receptor Nur77, a negative regulator of liver fibrosis development, plays a critical role in SPI's action. METHODS: A dual luciferase reporter system of α-SMA was established to evaluate the effect of SPI on hepatic stellate cell (HSC) activation in LX2 and HSC-T6 cells. A mouse model of CCl4-induced liver fibrosis was used to test the efficacy of SPI against liver fibrosis. The expression levels of Nur77, inflammatory cytokines and collagen were determined by Western blotting and qPCR. Potential kinase pathways involved were also analyzed. The affinity of Nur77 with SPI was documented by fluorescence titration. RESULTS: SPI can strongly suppress TGF-ß1-mediated activation of both LX2 and HSC-T6 cells in a dose-dependent manner. SPI increases the expression of Nur77 and reduces TGF-ß1-mediated phosphorylation levels of ASK1 and p38 MAPK, which can be reversed by knocking out of Nur77. SPI strongly inhibits collagen deposition (COLA1) and reduces inflammatory cytokines (IL-6 and IL-1ß), which is followed by improved liver function in the CCl4-induced mouse model. SPI can directly bind to R515 and R563 in the Nur77-LBD pocket with a Kd of 2.14 µM. CONCLUSION: Spinosin is the major pharmacological active component of Ziziphus jujuba Mill. var. spinosa which has been frequently prescribed in traditional Chinese medicine. We demonstrate here for the first time that spinosin is a new therapeutic lead for treatment of liver fibrosis by targeting Nur77 and blocking the ASK1/p38 MAPK signaling pathway.


Assuntos
Células Estreladas do Fígado , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Transdução de Sinais , Linhagem Celular , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Flavonoides/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Colágeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fígado
6.
Cell Res ; 33(12): 904-922, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37460805

RESUMO

Pyroptosis is a type of regulated cell death executed by gasdermin family members. However, how gasdermin-mediated pyroptosis is negatively regulated remains unclear. Here, we demonstrate that mannose, a hexose, inhibits GSDME-mediated pyroptosis by activating AMP-activated protein kinase (AMPK). Mechanistically, mannose metabolism in the hexosamine biosynthetic pathway increases levels of the metabolite N-acetylglucosamine-6-phosphate (GlcNAc-6P), which binds AMPK to facilitate AMPK phosphorylation by LKB1. Activated AMPK then phosphorylates GSDME at Thr6, which leads to blockade of caspase-3-induced GSDME cleavage, thereby repressing pyroptosis. The regulatory role of AMPK-mediated GSDME phosphorylation was further confirmed in AMPK knockout and GSDMET6E or GSDMET6A knock-in mice. In mouse primary cancer models, mannose administration suppressed pyroptosis in small intestine and kidney to alleviate cisplatin- or oxaliplatin-induced tissue toxicity without impairing antitumor effects. The protective effect of mannose was also verified in a small group of patients with gastrointestinal cancer who received normal chemotherapy. Our study reveals a novel mechanism whereby mannose antagonizes GSDME-mediated pyroptosis through GlcNAc-6P-mediated activation of AMPK, and suggests the utility of mannose supplementation in alleviating chemotherapy-induced side effects in clinic applications.


Assuntos
Manose , Piroptose , Humanos , Animais , Camundongos , Manose/farmacologia , Proteínas Quinases Ativadas por AMP , Gasderminas
7.
Cell Chem Biol ; 30(3): 261-277.e8, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36889311

RESUMO

Pulmonary fibrosis is a typical sequela of coronavirus disease 2019 (COVID-19), which is linked with a poor prognosis for COVID-19 patients. However, the underlying mechanism of pulmonary fibrosis induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Here, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 induced pulmonary fibrosis by activating pulmonary fibroblasts. N protein interacted with the transforming growth factor ß receptor I (TßRI), to disrupt the interaction of TßRI-FK506 Binding Protein12 (FKBP12), which led to activation of TßRI to phosphorylate Smad3 and boost expression of pro-fibrotic genes and secretion of cytokines to promote pulmonary fibrosis. Furthermore, we identified a compound, RMY-205, that bound to Smad3 to disrupt TßRI-induced Smad3 activation. The therapeutic potential of RMY-205 was strengthened in mouse models of N protein-induced pulmonary fibrosis. This study highlights a signaling pathway of pulmonary fibrosis induced by N protein and demonstrates a novel therapeutic strategy for treating pulmonary fibrosis by a compound targeting Smad3.


Assuntos
COVID-19 , Fibrose Pulmonar , Animais , Camundongos , COVID-19/complicações , Fibrose , Proteínas do Nucleocapsídeo/uso terapêutico , Fibrose Pulmonar/complicações , Fibrose Pulmonar/tratamento farmacológico , SARS-CoV-2
8.
Acta Trop ; 234: 106615, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35901919

RESUMO

Trichinella spiralis is a very successful parasite capable of surviving in many mammal hosts and residing in muscle tissues for long periods, indicating that it must have some effective strategies to escape from or guard against the host immune attack. The functions of MIF have been studied in other parasites and demonstrated to function as a virulence factor aiding in their survival by modulating the host immune response. However, the functions of Trichinella spiralis MIF (TsMIF) have not been addressed. Here, we successfully obtained the purified recombinant TsMIF and anti-TsMIF serum. Our results showed that TsMIF was expressed in all the Trichinella spiralis developmental stages, especially highly expressed in the muscle larvae (ML) and mainly located in stichocytes, midgut, cuticle, muscle cells of ML and around intrauterine embryos of female adults. We also observed TsMIF could be secreted from ML and bind to host monocytes. Next, our data demonstrated that TsMIF not only stimulated the phosphorylation of ERK1/2 and cell proliferation by binding to the host cell surface receptor CD74, but also interacted with a host intracellular protein, Jab1, which is a coactivator of AP-1 transcription. We concluded the secreted TsMIF plays an important role in the interaction between Trichinella spiralis and its host and could be a potential drug or vaccine target molecule against Trichinella spiralis infection.


Assuntos
Trichinella spiralis , Triquinelose , Vacinas , Animais , Feminino , Larva , Mamíferos , Monócitos , Trichinella spiralis/genética , Triquinelose/parasitologia
9.
Nat Metab ; 4(10): 1306-1321, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36192599

RESUMO

Extracellular vesicles play crucial roles in intercellular communication in the tumor microenvironment. Here we demonstrate that in hepatic fibrosis, TGF-ß stimulates the palmitoylation of hexokinase 1 (HK1) in hepatic stellate cells (HSCs), which facilitates the secretion of HK1 via large extracellular vesicles in a TSG101-dependent manner. The large extracellular vesicle HK1 is hijacked by hepatocellular carcinoma (HCC) cells, leading to accelerated glycolysis and HCC progression. In HSCs, the nuclear receptor Nur77 transcriptionally activates the expression of depalmitoylase ABHD17B to inhibit HK1 palmitoylation, consequently attenuating HK1 release. However, TGF-ß-activated Akt functionally represses Nur77 by inducing Nur77 phosphorylation and degradation. We identify the small molecule PDNPA that binds Nur77 to generate steric hindrance to block Akt targeting, thereby disrupting Akt-mediated Nur77 degradation and preserving Nur77 inhibition of HK1 release. Together, this study demonstrates an overlooked function of HK1 in HCC upon its release from HSCs and highlights PDNPA as a candidate compound for inhibiting HCC progression.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Estreladas do Fígado/metabolismo , Hexoquinase/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA