Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mass Spectrom Rev ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530668

RESUMO

Mass spectrometry (MS) has been proven as an excellent tool in ocular drug research allowing analyzes from small samples and low concentrations. This review begins with a short introduction to eye physiology and ocular pharmacokinetics and the relevance of advancing ophthalmic treatments. The second part of the review consists of an introduction to ocular proteomics, with special emphasis on targeted absolute quantitation of membrane transporters and metabolizing enzymes. The third part of the review deals with liquid chromatography-MS (LC-MS) and MS imaging (MSI) methods used in the analysis of drugs and metabolites in ocular samples. The sensitivity and speed of LC-MS make simultaneous quantitation of various drugs and metabolites possible in minute tissue samples, even though ocular sample preparation requires careful handling. The MSI methodology is on the verge of becoming as important as LC-MS in ocular pharmacokinetic studies, since the spatial resolution has reached the level, where cell layers can be separated, and quantitation with isotope-labeled standards has come more reliable. MS will remain in the foreseeable future as the main analytical method that will progress our understanding of ocular pharmacokinetics.

2.
Environ Sci Technol ; 58(16): 6913-6923, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38593436

RESUMO

4-Nonylphenol (4-NP), a para-substituted phenolic compound with a straight or branched carbon chain, is a ubiquitous environmental pollutant and food contaminant. 4-NP, particularly the branched form, has been identified as an endocrine disruptor (ED) with potent activities on estrogen receptors. Constitutive Androstane Receptor (CAR) is another crucial nuclear receptor that regulates hepatic lipid, glucose, and steroid metabolism and is involved in the ED mechanism of action. An NP mixture has been described as an extremely potent activator of both human and rodent CAR. However, detailed mechanistic aspects of CAR activation by 4-NP are enigmatic, and it is not known if 4-NP can directly interact with the CAR ligand binding domain (LBD). Here, we examined interactions of individual branched (22NP, 33NP, and 353NP) and linear 4-NPs with CAR variants using molecular dynamics (MD) simulations, cellular experiments with various CAR expression constructs, recombinant CAR LBD in a TR-FRET assay, or a differentiated HepaRG hepatocyte cellular model. Our results demonstrate that branched 4-NPs display more stable poses to activate both wild-type CAR1 and CAR3 variant LBDs in MD simulations. Consistently, branched 4-NPs activated CAR3 and CAR1 LBD more efficiently than linear 4-NP. Furthermore, in HepaRG cells, we observed that all 4-NPs upregulated CYP2B6 mRNA, a relevant hallmark for CAR activation. This is the first study to provide detailed insights into the direct interaction between individual 4-NPs and human CAR-LBD, as well as its dominant variant CAR3. The work could contribute to the safer use of individual 4-NPs in many areas of industry.


Assuntos
Fenóis , Humanos , Fenóis/química , Fenóis/metabolismo , Receptor Constitutivo de Androstano/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Disruptores Endócrinos/química , Simulação de Dinâmica Molecular
3.
Mol Psychiatry ; 27(3): 1300-1309, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34799692

RESUMO

Frontotemporal lobar degeneration (FTLD) comprises a heterogenous group of fatal neurodegenerative diseases and, to date, no validated diagnostic or prognostic biomarkers or effective disease-modifying therapies exist for the different clinical or genetic subtypes of FTLD. Current treatment strategies rely on the off-label use of medications for symptomatic treatment. Changes in several neurotransmitter systems including the glutamatergic, GABAergic, dopaminergic, and serotonergic systems have been reported in FTLD spectrum disease patients. Many FTLD-related clinical and neuropsychiatric symptoms such as aggressive and compulsive behaviour, agitation, as well as altered eating habits and hyperorality can be explained by disturbances in these neurotransmitter systems, suggesting that their targeting might possibly offer new therapeutic options for treating patients with FTLD. This review summarizes the present knowledge on neurotransmitter system deficits and synaptic dysfunction in model systems and patients harbouring the most common genetic causes of FTLD, the hexanucleotide repeat expansion in C9orf72 and mutations in the granulin (GRN) and microtubule-associated protein tau (MAPT) genes. We also describe the current pharmacological treatment options for FLTD that target different neurotransmitter systems.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Doenças Neurodegenerativas , Proteína C9orf72/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/terapia , Humanos , Mutação , Neurotransmissores , Proteínas tau/genética
4.
Mol Pharm ; 20(1): 206-218, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36394563

RESUMO

L-type amino acid transporter 1 (LAT1) transfers essential amino acids across cell membranes. Owing to its predominant expression in the blood-brain barrier and tumor cells, LAT1 has been exploited for drug delivery and targeting to the central nervous system (CNS) and various cancers. Although the interactions of amino acids and their mimicking compounds with LAT1 have been extensively investigated, the specific structural features for an optimal drug scaffold have not yet been determined. Here, we evaluated a series of LAT1-targeted drug-phenylalanine conjugates (ligands) by determining their uptake rates by in vitro studies and investigating their interaction with LAT1 via induced-fit docking. Combining the experimental and computational data, we concluded that although LAT1 can accommodate various types of structures, smaller compounds are preferred. As the ligand size increased, its flexibility became more crucial in determining the compound's transportability and interactions. Compounds with linear or planar structures exhibited reduced uptake; those with rigid lipophilic structures lacked interactions and likely utilized other transport mechanisms for cellular entry. Introducing polar groups between aromatic structures enhanced interactions. Interestingly, compounds with a carbamate bond in the aromatic ring's para-position displayed very good transport efficiencies for the larger compounds. Compared to the ester bond, the corresponding amide bond had superior hydrogen bond acceptor properties and increased interactions. A reverse amide bond was less favorable than a direct amide bond for interactions with LAT1. The present information can be applied broadly to design appropriate CNS or antineoplastic drug candidates with a prodrug strategy and to discover novel LAT1 inhibitors used either as direct or adjuvant cancer therapy.


Assuntos
Fenilalanina , Pró-Fármacos , Sistemas de Liberação de Medicamentos , Barreira Hematoencefálica/metabolismo , Aminoácidos/química , Pró-Fármacos/química , Transporte Biológico
5.
J Pharmacol Exp Ther ; 380(2): 114-125, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34794962

RESUMO

Drug-induced liver injury (DILI) is the leading cause of acute liver failure and a major concern in drug development. Altered bile acid homeostasis via inhibition of the bile salt export pump (BSEP) is one mechanism of DILI. Dasatinib, pazopanib, and sorafenib are tyrosine kinase inhibitors (TKIs) that competitively inhibit BSEP and increase serum biomarkers for hepatotoxicity in ∼25-50% of patients. However, the mechanism(s) of hepatotoxicity beyond competitive inhibition of BSEP are poorly understood. This study examined mechanisms of TKI-mediated hepatotoxicity associated with altered bile acid homeostasis. Dasatinib, pazopanib, and sorafenib showed bile acid-dependent toxicity at clinically relevant concentrations, based on the C-DILI assay using sandwich-cultured human hepatocytes (SCHH). Among several bile acid-relevant genes, cytochrome P450 (CYP) 7A1 mRNA was specifically upregulated by 6.2- to 7.8-fold (dasatinib) and 5.7- to 9.3-fold (pazopanib), compared with control, within 8 hours. This was consistent with increased total bile acid concentrations in culture medium up to 2.3-fold, and in SCHH up to 1.4-fold, compared with control, within 24 hours. Additionally, protein abundance of sodium taurocholate co-transporting polypeptide (NTCP) was increased up to 2.0-fold by these three TKIs. The increase in NTCP protein abundance correlated with increased function; dasatinib and pazopanib increased hepatocyte uptake clearance (CLuptake) of taurocholic acid, a probe bile acid substrate, up to 1.4-fold. In conclusion, upregulation of CYP7A1 and NTCP in SCHH constitute novel mechanisms of TKI-associated hepatotoxicity. SIGNIFICANCE STATEMENT: Understanding the mechanisms of hepatotoxicity associated with tyrosine kinase inhibitors (TKIs) is fundamental to development of effective and safe intervention therapies for various cancers. Data generated in sandwich-cultured human hepatocytes, an in vitro model of drug-induced hepatotoxicity, revealed that TKIs upregulate bile acid synthesis and alter bile acid uptake and excretion. These findings provide novel insights into additional mechanisms of bile acid-mediated drug-induced liver injury, an adverse effect that limits the use and effectiveness of TKI treatment in some cancer patients.


Assuntos
Antineoplásicos/toxicidade , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Cultivadas , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Dasatinibe/toxicidade , Hepatócitos/metabolismo , Humanos , Indazóis/toxicidade , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Pirimidinas/toxicidade , Sorafenibe/toxicidade , Sulfonamidas/toxicidade , Simportadores/metabolismo
6.
Drug Metab Dispos ; 50(7): 1002-1009, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35184042

RESUMO

The constitutive androstane receptor (CAR; NR1I3) has been established as one of the main drug- and xenobiotic-responsive transcriptional regulators, collectively called xenosensors. CAR activates the expression of several oxidative, hydrolytic, and conjugative drug-metabolizing enzymes and drug transporters, and therefore, it contributes to drug and xenobiotic elimination, drug interactions, and toxicological processes. This minireview introduces mechanisms that modulate CAR activity and focuses on the recent approaches used to search and characterize CAR agonists, inverse agonists, and indirect activators. This minireview is dedicated to Dr. Masahiko Negishi to celebrate his scientific achievements during his long service at the National Institutes of Health. SIGNIFICANCE STATEMENT: Discovery and characterization of human constitutive androstane receptor (CAR) modulators is important for drug development, toxicity studies, and in generation of chemical tools to dissect biological functions of CAR. This minireview focuses on the main methods used to search for these compounds and discusses their essential features.


Assuntos
Receptor Constitutivo de Androstano , Receptores Citoplasmáticos e Nucleares , Humanos , Proteínas de Membrana Transportadoras , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Xenobióticos/metabolismo
7.
Drug Metab Dispos ; 50(12): 1483-1492, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36195336

RESUMO

As a multitissue organ, the eye possesses unique anatomy and physiology, including differential expression of drug-metabolizing enzymes. Several hydrolytic enzymes that play a major role in drug metabolism and bioactivation of prodrugs have been detected in ocular tissues, but data on their quantitative expression is scarce. Also, many ophthalmic drugs are prone to hydrolysis. Metabolic characterization of individual ocular tissues is useful for the drug development process, and therefore, seven individual ocular tissues from human eyes were analyzed for the activity and expression of carboxylesterases (CESs) and arylacetamide deacetylase (AADAC). Generic and selective human esterase substrates 4-nitrophenyl acetate (most esterases), D-luciferin methyl ester (CES1), fluorescein diacetate and procaine (CES2), and phenacetin (AADAC) were applied to determine the enzymes' specific activities. Enzyme kinetics and inhibition studies were performed with isoform-selective inhibitors digitonin (CES1) and verapamil and diltiazem (CES2). Enzyme contents were determined using quantitative targeted proteomics, and CES2 expression was confirmed by western blotting. The expression and activity of human CES1 among ocular tissues varied by >10-fold, with the highest levels found in the retina and iris-ciliary body. In contrast, human CES2 expression appeared lower and more similar between tissues, whereas AADAC could not be detected. Inhibition studies showed that hydrolysis of fluorescein diacetate is also catalyzed by enzymes other than CES2. This study provides, for the first time, quantitative information on the tissue-dependent expression of human ocular esterases, which can be useful for the development of ocular drugs, prodrugs, and in pharmacokinetic modeling of the eye. SIGNIFICANCE STATEMENT: Novel and comprehensive data on the protein expression and activities of carboxylesterases from individual human eye tissues are generated. In combination with previous reports on preclinical species, this study will improve the understanding of interspecies differences in ocular drug metabolism and aid the development of ocular pharmacokinetics models.


Assuntos
Hidrolases de Éster Carboxílico , Pró-Fármacos , Humanos , Hidrolases de Éster Carboxílico/metabolismo , Carboxilesterase/metabolismo , Fluoresceínas , Hidrólise
8.
Mol Pharmacol ; 100(6): 599-608, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599072

RESUMO

Organic solute transporter α/ß (OSTα/ß) is a bidirectional bile acid transporter localized on the basolateral membrane of hepatic, intestinal, and renal epithelial cells. OSTα/ß plays a critical role in intestinal bile acid reabsorption and is upregulated in hepatic diseases characterized by elevated bile acids, whereas genetic variants in SLC51A/B have been associated with clinical cholestasis. OSTα/ß also transports and is inhibited by commonly used medications. However, there is currently no high-resolution structure of OSTα/ß, and structure-function data for OSTα, the proposed substrate-binding subunit, are lacking. The present study addressed this knowledge gap and identified amino acids in OSTα that are important for bile acid transport. This was accomplished using computational modeling and site-directed mutagenesis of the OSTα subunit to generate OSTα/ß mutant cell lines. Out of the 10 OSTα/ß mutants investigated, four (S228K, T229S, Q269E, Q269K) exhibited decreased [3H]-taurocholate (TCA) uptake (ratio of geometric means relative to OSTα/ß wild type (WT) of 0.76, 0.75, 0.79, and 0.13, respectively). Three OSTα/ß mutants (S228K, Q269K, E305A) had reduced [3H]-TCA efflux % (ratio of geometric means relative to OSTα/ß WT of 0.86, 0.65, and 0.79, respectively). Additionally, several OSTα/ß mutants demonstrated altered expression and cellular localization when compared with OSTα/ß WT. In summary, we identified OSTα residues (Ser228, Thr229, Gln269, Glu305) in predicted transmembrane domains that affect expression of OSTα/ß and may influence OSTα/ß-mediated bile acid transport. These data advance our understanding of OSTα/ß structure/function and can inform future studies designed to gain further insight into OSTα/ß structure or to identify additional OSTα/ß substrates and inhibitors. SIGNIFICANCE STATEMENT: OSTα/ß is a clinically important transporter involved in enterohepatic bile acid recycling with currently no high-resolution protein structure and limited structure-function data. This study identified four OSTα amino acids (Ser228, Thr229, Gln269, Glu305) that affect expression of OSTα/ß and may influence OSTα/ß-mediated bile acid transport. These data can be utilized to inform future investigation of OSTα/ß structure and refine molecular modeling approaches to facilitate the identification of substrates and/or inhibitors of OSTα/ß.


Assuntos
Proteínas de Transporte/química , Glicoproteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Substituição de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Ácido Taurocólico/química , Ácido Taurocólico/metabolismo
9.
Mol Pharm ; 18(3): 1305-1316, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33595329

RESUMO

Hydrolytic reactions constitute an important pathway of drug metabolism and a significant route of prodrug activation. Many ophthalmic drugs and prodrugs contain ester groups that greatly enhance their permeation across several hydrophobic barriers in the eye before the drugs are either metabolized or released, respectively, via hydrolysis. Thus, the development of ophthalmic drug therapy requires the thorough profiling of substrate specificities, activities, and expression levels of ocular esterases. However, such information is scant in the literature, especially for preclinical species often used in ophthalmology such as rabbits and pigs. Therefore, our aim was to generate systematic information on the activity and expression of carboxylesterases (CESs) and arylacetamide deacetylase (AADAC) in seven ocular tissue homogenates from these two species. The hydrolytic activities were measured using a generic esterase substrate (4-nitrophenyl acetate) and, in the absence of validated substrates for rabbit and pig enzymes, with selective substrates established for human CES1, CES2, and AADAC (d-luciferin methyl ester, fluorescein diacetate, procaine, and phenacetin). Kinetics and inhibition studies were conducted using these substrates and, again due to a lack of validated rabbit and pig CES inhibitors, with known inhibitors for the human enzymes. Protein expression levels were measured using quantitative targeted proteomics. Rabbit ocular tissues showed significant variability in the expression of CES1 (higher in cornea, lower in conjunctiva) and CES2 (higher in conjunctiva, lower in cornea) and a poor correlation of CES expression with hydrolytic activities. In contrast, pig tissues appear to express only CES1, and CES3 and AADAC seem to be either low or absent, respectively, in both species. The current study revealed remarkable species and tissue differences in ocular hydrolytic enzymes that can be taken into account in the design of esterase-dependent prodrugs and drug conjugates, the evaluation of ocular effects of systemic drugs, and in translational and toxicity studies.


Assuntos
Carboxilesterase/metabolismo , Olho/metabolismo , Animais , Feminino , Humanos , Hidrólise/efeitos dos fármacos , Masculino , Nitrofenóis/metabolismo , Pró-Fármacos/metabolismo , Proteômica/métodos , Coelhos , Especificidade por Substrato/fisiologia , Suínos
10.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344727

RESUMO

Endocrine disruptors (EDs) are defined as chemicals that mimic, block, or interfere with hormones in the body's endocrine systems and have been associated with a diverse array of health issues. The concept of endocrine disruption has recently been extended to metabolic alterations that may result in diseases, such as obesity, diabetes, and fatty liver disease, and constitute an increasing health concern worldwide. However, while epidemiological and experimental data on the close association of EDs and adverse metabolic effects are mounting, predictive methods and models to evaluate the detailed mechanisms and pathways behind these observed effects are lacking, thus restricting the regulatory risk assessment of EDs. The EDCMET (Metabolic effects of Endocrine Disrupting Chemicals: novel testing METhods and adverse outcome pathways) project brings together systems toxicologists; experimental biologists with a thorough understanding of the molecular mechanisms of metabolic disease and comprehensive in vitro and in vivo methodological skills; and, ultimately, epidemiologists linking environmental exposure to adverse metabolic outcomes. During its 5-year journey, EDCMET aims to identify novel ED mechanisms of action, to generate (pre)validated test methods to assess the metabolic effects of Eds, and to predict emergent adverse biological phenotypes by following the adverse outcome pathway (AOP) paradigm.


Assuntos
Disruptores Endócrinos/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Animais , Biomarcadores , Suscetibilidade a Doenças , Sistema Endócrino/efeitos dos fármacos , Sistema Endócrino/metabolismo , Exposição Ambiental , Poluentes Ambientais , Epigênese Genética , Humanos , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
11.
Mol Pharmacol ; 96(5): 655-663, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31575620

RESUMO

Aldehyde hydrogenases (ALDHs) belong to a large gene family involved in oxidation of both endogenous and exogenous compounds in mammalian tissues. Among ALDHs, the rat ALDH1A7 gene displays a curious strain dependence in phenobarbital (PB)-induced hepatic expression: the responsive RR strains exhibit induction of both ALDH1A7 and CYP2B mRNAs and activities, whereas the nonresponsive rr strains show induction of CYP2B only. Here, we investigated the responsiveness of ALDH1A1, ALDH1A7, CYP2B1, and CYP3A23 genes to prototypical P450 inducers, expression of nuclear receptors CAR and pregnane X receptor, and structure of the ALDH1A7 promoter in both rat strains. ALDH1A7 mRNA, associated protein and activity were strongly induced by PB and modestly induced by pregnenolone 16α-carbonitrile in the RR strain but negligibly in the rr strain, whereas induction of ALDH1A1 and P450 mRNAs was similar between the strains. Reporter gene and chromatin immunoprecipitation assays indicated that the loss of ALDH1A7 inducibility in the rr strain is profoundly linked with a 16-base pair deletion in the proximal promoter and inability of the upstream DNA sequences to recruit constitutive androstane receptor-retinoid X receptor heterodimers. SIGNIFICANCE STATEMENT: Genetic variation in rat ALDH1A7 promoter sequences underlie the large strain-dependent differences in expression and inducibility by phenobarbital of the aldehyde dehydrogenase activity. This finding has implications for the design and interpretation of pharmacological and toxicological studies on the effects and disposition of aldehydes.


Assuntos
Família Aldeído Desidrogenase 1/biossíntese , Família Aldeído Desidrogenase 1/genética , Regulação Enzimológica da Expressão Gênica , Variação Genética/fisiologia , Animais , Masculino , Ratos , Ratos Wistar , Especificidade da Espécie
12.
Drug Metab Rev ; : 1-23, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888291
13.
Drug Metab Dispos ; 47(10): 1222-1230, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31371422

RESUMO

Human hepatoma cell lines are useful for evaluation of drug-induced hepatotoxicity, hepatic drug disposition, and drug-drug interactions. However, their applicability is compromised by aberrant expression of hepatobiliary transporters. This study was designed to evaluate whether extracellular matrix (Matrigel) overlay and dexamethasone (DEX) treatment would support cellular maturation of long-term HuH-7 hepatoma cell cultures and improve the expression, localization, and activity of canalicular ATP-binding cassette (ABC) transporters, multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1), multidrug resistance-associated protein 2 (MRP2/ABCC2), and bile salt export pump (BSEP/ABCB11). Matrigel overlay promoted the maturation of HuH-7 cells toward cuboidal, hepatocyte-like cells displaying bile canaliculi-like structures visualized by staining for filamentous actin (F-actin), colocalization of MRP2 with F-actin, and by accumulation of the MRP2 substrate 5(6)-carboxy-2',7'-dichlorofluorescein (CDF) within the tubular canaliculi. The cellular phenotype was rather homogenous in the Matrigel-overlaid cultures, whereas the standard HuH-7 cultures contained both hepatocyte-like cells and flat epithelium-like cells. Only Matrigel-overlaid HuH-7 cells expressed MDR1 at the canaliculi and excreted the MDR1 probe substrate digoxin into biliary compartments. DEX treatment resulted in more elongated and branched canaliculi and restored canalicular expression and function of BSEP. These findings suggest that hepatocyte polarity, elongated canalicular structures, and proper localization and function of canalicular ABC transporters can be recovered, at least in part, in human hepatoma HuH-7 cells by applying the modified culture conditions. SIGNIFICANCE STATEMENT: We report the first demonstration that proper localization and function of canalicular ABC transporters can be recovered in human hepatoma HuH-7 cells by modification of cell culture conditions. Matrigel overlay and dexamethasone supplementation increased the proportion of hepatocyte-like cells, strongly augmented the canalicular structures between the cells, and restored the localization and function of key canalicular ABC transporters. These results will facilitate the development of reproducible, economical, and easily achievable liver cell models for drug development.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Canalículos Biliares/metabolismo , Técnicas de Cultura de Células/métodos , Meios de Cultura/farmacologia , Canalículos Biliares/efeitos dos fármacos , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Colágeno/farmacologia , Dexametasona/farmacologia , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Humanos , Laminina/farmacologia , Proteína 2 Associada à Farmacorresistência Múltipla , Proteoglicanas/farmacologia
14.
Mol Pharm ; 16(1): 238-246, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30481467

RESUMO

Drug interactions with the organic solute transporter alpha/beta (OSTα/ß) are understudied even though OSTα/ß is an important transporter that is expressed in multiple human tissues including the intestine, kidneys, and liver. In this study, an in vitro method to identify novel OSTα/ß inhibitors was first developed using OSTα/ß-overexpressing Flp-In 293 cells. Incubation conditions were optimized using previously reported OSTα/ß inhibitors. A method including a 10 min preincubation step with the test compound was used to screen for OSTα/ß inhibition by 77 structurally diverse compounds and fixed-dose combinations. Seven compounds and one fixed-dose combination (100 µM final concentration) inhibited OSTα/ß-mediated dehydroepiandrosterone sulfate (DHEAS) uptake by >25%. Concentration-dependent OSTα/ß inhibition was evaluated for all putative inhibitors (atorvastatin, ethinylestradiol, fidaxomicin, glycochenodeoxycholate, norgestimate, troglitazone, and troglitazone sulfate). Ethinylestradiol, fidaxomicin, and troglitazone sulfate yielded a clear concentration-inhibition response with IC50 values <200 µM. Among all tested compounds, there was no clear association between physicochemical properties, the severity of hepatotoxicity, and the degree of OSTα/ß inhibition. This study utilized a novel in vitro method to identify OSTα/ß inhibitors and, for the first time, provided IC50 values for OSTα/ß inhibition. These data provide evidence that several drugs, some of which are associated with cholestatic drug-induced liver injury, may impair the function of the OSTα/ß transporter.


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestase/metabolismo , Sulfato de Desidroepiandrosterona/metabolismo , Humanos , Cinética , Análise de Componente Principal
15.
J Neuroinflammation ; 14(1): 215, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115990

RESUMO

BACKGROUND: DHCR24, involved in the de novo synthesis of cholesterol and protection of neuronal cells against different stress conditions, has been shown to be selectively downregulated in neurons of the affected brain areas in Alzheimer's disease. METHODS: Here, we investigated whether the overexpression of DHCR24 protects neurons against inflammation-induced neuronal death using co-cultures of mouse embryonic primary cortical neurons and BV2 microglial cells upon acute neuroinflammation. Moreover, the effects of DHCR24 overexpression on dendritic spine density and morphology in cultured mature mouse hippocampal neurons and on the outcome measures of ischemia-induced brain damage in vivo in mice were assessed. RESULTS: Overexpression of DHCR24 reduced the loss of neurons under inflammation elicited by LPS and IFN-γ treatment in co-cultures of mouse neurons and BV2 microglial cells but did not affect the production of neuroinflammatory mediators, total cellular cholesterol levels, or the activity of proteins linked with neuroprotective signaling. Conversely, the levels of post-synaptic cell adhesion protein neuroligin-1 were significantly increased upon the overexpression of DHCR24 in basal growth conditions. Augmentation of DHCR24 also increased the total number of dendritic spines and the proportion of mushroom spines in mature mouse hippocampal neurons. In vivo, overexpression of DHCR24 in striatum reduced the lesion size measured by MRI in a mouse model of transient focal ischemia. CONCLUSIONS: These results suggest that the augmentation of DHCR24 levels provides neuroprotection in acute stress conditions, which lead to neuronal loss in vitro and in vivo.


Assuntos
Inflamação/metabolismo , Neurônios/metabolismo , Neuroproteção/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Morte Celular/fisiologia , Técnicas de Cocultura , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Inflamação/patologia , Masculino , Camundongos , Microglia/metabolismo , Neurônios/patologia
16.
Anal Bioanal Chem ; 409(1): 251-268, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27734142

RESUMO

Cocktail phenotyping using specific probe drugs for cytochrome P450 (CYP) enzymes provides information on the real-time activity of multiple CYPs. We investigated different sample preparation techniques and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with simple protein precipitation for the analysis of nine CYP probe drugs and their metabolites in human serum and urine. Specific CYP probe drugs (melatonin, CYP1A2; nicotine, CYP2A6; bupropion, CYP2B6; repaglinide, CYP2C8; losartan, CYP2C9; omeprazole, CYP2C19 and CYP3A4; dextromethorphan, CYP2D6; chlorzoxazone, CYP2E; midazolam, CYP3A4) and their main metabolites, with the exception of 3'-hydroxyrepaglinide, were quantified in human serum and urine using the developed LC-MS/MS method. The analytical method was fully validated showing high selectivity, linearity, acceptable accuracy (85-115 %) and precision (2-19 %) and applied to a pharmacokinetic study in four healthy volunteers after oral administration of drugs given as a cocktail. All probe drugs and their metabolites (totally 19 analytes) were detected and quantified from human serum and urine over the time range of 1 to 6 h after oral administration. Therefore, the proposed method is applicable for drug interaction and CYP phenotyping studies utilizing a cocktail approach. Graphical Abstract Workflow overwiew of cocktail CYP-phenotyping study.


Assuntos
Cromatografia Líquida/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/urina , Espectrometria de Massas em Tandem/métodos , Adulto , Sistema Enzimático do Citocromo P-450/análise , Feminino , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Preparações Farmacêuticas/metabolismo
17.
Xenobiotica ; 46(3): 200-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26153444

RESUMO

1. Nuclear receptors CAR (NR1I3) and PXR (NR1I2) are major ligand-activated transcriptional regulators of xenobiotic metabolism and disposition and modulators of endobiotic metabolism. Differences in xenobiotic selectivity between the human and rodent receptors are well recognized but there is lack of such information on properties of CAR and PXR in important domestic animals. 2. The pig and bovine receptors were cloned and their ligand profiles were systematically compared to corresponding human and mouse forms utilizing a panel of xenobiotics and structural analysis. 3. Pig CAR and PXR resemble their human counterparts which can be rationalized by only modest amino acid changes between critical residues of the human ligand-binding pockets (H203Q for CAR, L210V and M243I for PXR). 4. In contrast, bovine CAR shows a blunted response to CAR agonists and inverse agonists. These changes are likely due to disruptive mutations at or near critical hydrogen bond-forming residues (N165I, Y326F). The unresponsiveness of bovine PXR to human- and mouse-selective agonists may be related to substitutions at important ligand-contacting residues R410Q and F305V, respectively. 5. Our findings have implications for regulation of drug-metabolizing enzymes and transporters and pharmacokinetics in cattle and pigs.


Assuntos
Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Clonagem Molecular , Receptor Constitutivo de Androstano , Regulação da Expressão Gênica , Humanos , Inativação Metabólica , Ligantes , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Receptor de Pregnano X , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Esteroides/genética , Alinhamento de Sequência , Suínos
18.
Exp Eye Res ; 132: 208-15, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25662315

RESUMO

Retinal pigment epithelium (RPE) plays the principal role in age-related macular degeneration (AMD), a progressive eye disease with no cure and limited therapeutical options. In the pathogenesis of AMD, degeneration of RPE cells by multiple factors including increased oxidative stress and chronic inflammation precedes the irreversible loss of photoreceptors and central vision. Here, we report that the plant-derived polyphenol, quercetin, increases viability and decreases inflammation in stressed human ARPE-19 cells after exposure to the lipid peroxidation end product 4-hydroxynonenal (HNE). Several previous studies have been conducted using the direct oxidant H2O2 but we preferred HNE since natural characteristics predispose RPE cells to the type of oxidative damage evoked by lipid peroxidation. Quercetin improved cell membrane integrity and mitochondrial function as assessed in LDH and MTT tests. Decreased production of proinflammatory mediators IL-6, IL-8, and MCP-1 were indicated at the RNA level by qPCR and at the protein level by the ELISA technique. In addition, we probed the signaling behind the effects and observed that p38 and ERK MAPK pathways, and CREB signaling are regulated by quercetin in ARPE-19 cells. In conclusion, our present data suggests that HNE is highly toxic to serum-starved ARPE-19 cells but quercetin is able to reverse these adverse effects even when administered after an oxidative insult.


Assuntos
Aldeídos/toxicidade , Antioxidantes/farmacologia , Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Aldeídos/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quimiocinas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Estresse Oxidativo/fisiologia , RNA Mensageiro/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Arch Toxicol ; 89(7): 1045-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25975989

RESUMO

The constitutive androstane receptor (CAR), a member of the nuclear receptor superfamily, is a well-known xenosensor that regulates hepatic drug metabolism and detoxification. CAR activation can be elicited by a large variety of xenobiotics, including phenobarbital (PB) which is not a directly binding CAR ligand. The mechanism of CAR activation is complex and involves translocation from the cytoplasm into the nucleus, followed by further activation steps in the nucleus. Recently, epidermal growth factor receptor (EGFR) has been identified as a PB-responsive receptor, and PB activates CAR by inhibiting the EGFR signaling. In addition to regulation of drug metabolism, activation of CAR has multiple biological end points such as modulation of xenobiotic-elicited liver injury, and the role of CAR in endobiotic functions such as glucose metabolism and cholesterol homeostasis is increasingly recognized. Thus, investigations on the molecular mechanism of CAR activation are critical for the real understanding of CAR-mediated processes. Here, we summarize the current understanding of mechanisms by which CAR activators regulate gene expression through cellular signaling pathways and the roles of CAR on xenobiotic-elicited hepatocellular carcinoma, liver injury, glucose metabolism and cholesterol homeostasis.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Xenobióticos/toxicidade , Transporte Ativo do Núcleo Celular , Animais , Biotransformação , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Colesterol/metabolismo , Receptor Constitutivo de Androstano , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/metabolismo , Glucose/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fenobarbital/toxicidade , Receptor Cross-Talk , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
20.
Hepatol Commun ; 8(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381537

RESUMO

BACKGROUND: NAFLD is highly prevalent with limited treatment options. Bile acids (BAs) increase in the systemic circulation and liver during NAFLD progression. Changes in plasma membrane localization and zonal distribution of BA transporters can influence transport function and BA homeostasis. However, a thorough characterization of how NAFLD influences these factors is currently lacking. This study aimed to evaluate the impact of NAFLD and the accompanying histologic features on the functional capacity of key hepatocyte BA transporters across zonal regions in human liver biopsies. METHODS: A novel machine learning image classification approach was used to quantify relative zonal abundance and plasma membrane localization of BA transporters (bile salt export pump [BSEP], sodium-taurocholate cotransporting polypeptide, organic anion transporting polypeptide [OATP] 1B1 and OATP1B3) in non-diseased (n = 10), NAFL (n = 9), and NASH (n = 11) liver biopsies. Based on these data, membrane-localized zonal abundance (MZA) measures were developed to estimate transporter functional capacity. RESULTS: NAFLD diagnosis and histologic scoring were associated with changes in transporter membrane localization and zonation. Increased periportal BSEPMZA (mean proportional difference compared to non-diseased liver of 0.090) and decreased pericentral BSEPMZA (-0.065) were observed with NASH and also in biopsies with higher histologic scores. Compared to Non-diseased Liver, periportal OATP1B3MZA was increased in NAFL (0.041) and NASH (0.047). Grade 2 steatosis (mean proportional difference of 0.043 when compared to grade 0) and grade 1 lobular inflammation (0.043) were associated with increased periportal OATP1B3MZA. CONCLUSIONS: These findings provide novel mechanistic insight into specific transporter alterations that impact BA homeostasis in NAFLD. Changes in BSEPMZA likely contribute to altered BA disposition and pericentral microcholestasis previously reported in some patients with NAFLD. BSEPMZA assessment could inform future development and optimization of NASH-related pharmacotherapies.


Assuntos
Proteínas de Transporte , Glicoproteínas de Membrana , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatócitos/metabolismo , Proteínas de Membrana Transportadoras , Membrana Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA