Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 612(7939): 259-265, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36443603

RESUMO

The unique topology and physics of chiral superlattices make their self-assembly from nanoparticles highly sought after yet challenging in regard to (meta)materials1-3. Here we show that tetrahedral gold nanoparticles can transform from a perovskite-like, low-density phase with corner-to-corner connections into pinwheel assemblies with corner-to-edge connections and denser packing. Whereas corner-sharing assemblies are achiral, pinwheel superlattices become strongly mirror asymmetric on solid substrates as demonstrated by chirality measures. Liquid-phase transmission electron microscopy and computational models show that van der Waals and electrostatic interactions between nanoparticles control thermodynamic equilibrium. Variable corner-to-edge connections among tetrahedra enable fine-tuning of chirality. The domains of the bilayer superlattices show strong chiroptical activity as identified by photon-induced near-field electron microscopy and finite-difference time-domain simulations. The simplicity and versatility of substrate-supported chiral superlattices facilitate the manufacture of metastructured coatings with unusual optical, mechanical and electronic characteristics.


Assuntos
Ouro , Nanopartículas Metálicas , Eletrônica , Física
2.
Nano Lett ; 24(2): 549-556, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174901

RESUMO

Rhombic dodecahedral nanocrystals have been considered particularly difficult to synthesize because they are enclosed by {110}, a low-index facet with the greatest surface energy. Recently, we demonstrated the use of seed-mediated growth for the facile and robust synthesis of Au rhombic dodecahedral nanocrystals (AuRD). While the unique shape and surface structure of AuRD are desirable for potential applications in plasmonics and catalysis, respectively, their high surface energy makes them highly susceptible to thermal degradation. Here we demonstrate that it is feasible to greatly improve the thermal stability with some sacrifice to the plasmonic properties of the original AuRD by coating their surface with an ultrathin shell made of Pt. Our in situ electron microscopy analysis indicates that the ultrathin Pt coating can increase the thermal stability from 60 up to 450 °C, a trend that is also supported by the results from a computational study.

3.
Nano Lett ; 23(3): 931-938, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36700844

RESUMO

The need for novel materials for energy storage and generation calls for chemical control at the atomic scale in nanomaterials. Ordered double-transition-metal MXenes expanded the chemical diversity of the family of atomically layered 2D materials since their discovery in 2015. However, atomistic tunability of ordered MXenes to achieve ideal composition-property relationships has not been yet possible. In this study, we demonstrate the synthesis of Mo2+αNb2-αAlC3 MAX phases (0 ≤ α ≤ 0.3) and confirm the preferential ordering behavior of Mo and Nb in the outer and inner M layers, respectively, using density functional theory, Rietveld refinement, and electron microscopy methods. We also synthesize their 2D derivative Mo2+αNb2-αC3Tx MXenes and exemplify the effect of preferential ordering on their hydrogen evolution reaction electrocatalytic behavior. This study seeks to inspire further exploration of the ordered double-transition-metal MXene family and contribute composition-behavior tools toward application-driven design of 2D materials.

4.
Nat Mater ; 20(11): 1485-1490, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34059815

RESUMO

Solid electrolytes hold great promise for enabling the use of Li metal anodes. The main problem is that during cycling, Li can infiltrate along grain boundaries and cause short circuits, resulting in potentially catastrophic battery failure. At present, this phenomenon is not well understood. Here, through electron microscopy measurements on a representative system, Li7La3Zr2O12, we discover that Li infiltration in solid oxide electrolytes is strongly associated with local electronic band structure. About half of the Li7La3Zr2O12 grain boundaries were found to have a reduced bandgap, around 1-3 eV, making them potential channels for leakage current. Instead of combining with electrons at the cathode, Li+ ions are hence prematurely reduced by electrons at grain boundaries, forming local Li filaments. The eventual interconnection of these filaments results in a short circuit. Our discovery reveals that the grain-boundary electronic conductivity must be a primary concern for optimization in future solid-state battery design.

5.
Nano Lett ; 21(1): 151-157, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33337887

RESUMO

Li phosphorus oxynitride (LiPON) is one of a very few solid electrolytes that have demonstrated high stability against Li metal and extended cyclability with high Coulombic efficiency for all solid-state batteries (ASSBs). However, theoretical calculations show that LiPON reacts with Li metal. Here, we utilize in situ electron microscopy to observe the dynamic evolutions at the LiPON-Li interface upon contacting and under biasing. We reveal that a thin interface layer (∼60 nm) develops at the LiPON-Li interface upon contact. This layer is composed of conductive binary compounds that show a unique spatial distribution that warrants an electrochemical stability of the interface, serving as an effective passivation layer. Our results explicate the excellent cyclability of LiPON and reconcile the existing debates regarding the stability of the LiPON-Li interface, demonstrating that, though glassy solid electrolytes may not have a perfect initial electrochemical window with Li metal, they may excel in future applications for ASSBs.

6.
J Am Chem Soc ; 143(16): 6293-6302, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33852314

RESUMO

We report the synthesis of Rh nanocrystals with different shapes by controlling the kinetics involved in the growth of preformed Rh cubic seeds. Specifically, Rh nanocrystals with cubic, cuboctahedral, and octahedral shapes can all be obtained from the same cubic seeds under suitable reduction kinetics for the precursor. The success of such a synthesis also relies on the use of a halide-free precursor to avoid oxidative etching, as well as the involvement of a sufficiently high temperature to remove Br- ions from the seeds while ensuring adequate surface diffusion. The availability of Rh nanocrystals with cubic and octahedral shapes allows for an evaluation of the facet dependences of their thermal and catalytic properties. The data from in situ electron microscopy studies indicate that the cubic and octahedral Rh nanocrystals can keep their original shapes up to 700 and 500 °C, respectively. When tested as catalysts for hydrazine decomposition, the octahedral nanocrystals exhibit almost 4-fold enhancement in terms of H2 selectivity relative to the cubic counterpart. As for ethanol oxidation, the order is reversed, with the cubic nanocrystals being about three times more active than the octahedral sample.

7.
Small ; 16(41): e2003224, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32939986

RESUMO

Memristive devices are among the most prominent candidates for future computer memory storage and neuromorphic computing. Though promising, the major hurdle for their industrial fabrication is their device-to-device and cycle-to-cycle variability. These occur due to the random nature of nanoionic conductive filaments, whose rupture and formation govern device operation. Changes in filament location, shape, and chemical composition cause cycle-to-cycle variability. This challenge is tackled by spatially confining conductive filaments with Ni nanoparticles. Ni nanoparticles are integrated on the bottom La0.2 Sr0.7 Ti0.9 Ni0.1 O3- δ electrode by an exsolution method, in which, at high temperatures under reducing conditions, Ni cations migrate to the perovskite surface, generating metallic nanoparticles. This fabrication method offers fine control over particle size and density and ensures strong particle anchorage in the bottom electrode, preventing movement and agglomeration. In devices based on amorphous SrTiO3 , it is demonstrated that as the exsolved Ni nanoparticle diameter increases up to ≈50 nm, the ratio between the ON and OFF resistance states increases from single units to 180 and the variability of the low resistance state reaches values below 5%. Exsolution is applied for the first time to engineer solid-solid interfaces extending its realm of application to electronic devices.

8.
J Am Chem Soc ; 141(17): 7028-7036, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30973711

RESUMO

Ruthenium nanocrystals with both a face-centered cubic ( fcc) structure and well-controlled facets are attractive catalytic materials for various reactions. Here we report a simple method for the synthesis of Ru octahedral nanocrystals with an fcc structure and an edge length of 9 nm. The success of this synthesis relies on the use of 4.5 nm Rh cubes as seeds to facilitate the heterogeneous nucleation and overgrowth of Ru atoms. We choose Rh because it can resist oxidative etching under the harsh conditions for Ru overgrowth, it can be readily prepared as nanocubes with edge lengths less than 5 nm, and its atoms have a size close to that of Ru atoms. During the seed-mediated growth, the atomic packing of Ru overlayers follows an fcc lattice, in contrast to the conventional hexagonal close-packed ( hcp) lattice associated with bulk Ru. The final product takes an octahedral shape, with the surface enclosed by {111} facets. Our in situ measurements suggest that both the octahedral shape and the fcc crystal structure can be well preserved up to 400 °C, which is more than 100 °C higher than what was reported for Ru octahedral nanocages. When utilized as catalysts, the Ru octahedral nanocrystals exhibited 4.4-fold enhancement in terms of specific activity toward oxygen evolution relative to hcp-Ru nanoparticles. We also demonstrate that Ru{111} facets are more active than Ru{100} facets in catalyzing the oxygen evolution reaction. Altogether, this work offers an effective method for the synthesis of Ru nanocrystals with an fcc structure and well-defined {111} facets, as well as enhanced thermal stability and catalytic activity. We believe these nanocrystals will find use in various catalytic applications.

9.
Small ; 15(36): e1902118, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31328882

RESUMO

As a solid precursor to O2 and hydrogen peroxide (H2 O2 ), calcium peroxide (CaO2 ) has found widespread use in applications related to disinfection and contaminant degradation. The lack of uniform nanoparticles, however, greatly limits the potential use of this material in other applications related to medicine. Here, a new route to the facile synthesis of CaO2 nanocrystals and their spherical aggregates with uniform, controllable sizes is reported. The synthesis involves the reaction between CaCl2 and H2 O2 to generate CaO2 primary nanocrystals of 2-15 nm in size in ethanol, followed by their aggregation into uniform, spherical particles with the aid of poly(vinyl pyrrolidone) (PVP). The average diameter of the spherical aggregates can be easily tuned in the range of 15-100 nm by varying the concentrations of CaCl2 and/or PVP. For the spherical aggregates with a smaller size, they release H2 O2 and O2 more quickly when exposed to water, resulting in superior antimicrobial activity. This study not only demonstrates a new route to the synthesis of uniform CaO2 nanocrystals and their spherical aggregates but also offers a promising bacteriostatic agent with biodegradability.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas/química , Peróxidos/química , Antibacterianos/química , Cloreto de Cálcio/química , Hidrogênio/química , Peróxido de Hidrogênio/química , Oxigênio/química , Polivinil/química , Pirrolidinas/química
10.
Nanotechnology ; 30(30): 305601, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30986768

RESUMO

Silver (Ag) nanoparticles can be spontaneously oxidized and present in different oxidized surface phases. The impact of oxidation induced photo absorption property and related photocatalytic activity are still unclear in Ag-decorated semiconductor photocatalysts. Herein, Ag-decorated BiOCl with the metallic Ag0 to oxidized Ag+ were employed to investigate the effect of surface state of Ag on relative photocatalyst properties. A redshift of localized surface plasmon resonance was observed as the Ag0 oxidized to Ag+ and a reversible manipulation was realized in UV light-driven photocatalysis. It is found that the Ag0/BiOCl presents higher photocatalytic activity than Ag+/BiOCl, but this difference is gradually decreasing under UV light irradiation compared with visible light irradiation. A controlled experiment suggests that the reduction of Ag+ under UV light reduced the difference between Ag0/BiOCl and Ag+/BiOCl. The possible mechanism for electron transport and the conversion between Ag+ and Ag0 via the assistance of the photoelectric effect from BiOCl has been elucidated. This photocatalytic reaction assisted reversible tuning the surface state of Ag/BiOCl will open up the possibility of rationally designing Ag-decorated semiconductors for light harvesting.

11.
Nano Lett ; 18(11): 7004-7013, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30288983

RESUMO

Synthesizing concave-structured nanoparticles (NP) with high-index surfaces offers a viable method to significantly enhance the catalytic activity of NPs. Current approaches for fabricating concave NPs, however, are limited. Exploring novel synthesis methods requires a thorough understanding of the competing mechanisms that contribute to the evolution of surface structures during NP growth. Here, by tracking the evolution of Pd nanocubes into concave NPs at atomic scale using in situ liquid cell transmission electron microscopy, our study reveals that concave-structured Pd NPs can be formed by the cointroduction of surface capping agents and halogen ions. These two chemicals jointly create a new surface energy landscape of Pd NPs, leading to the morphological transformation. In particular, Pd atoms dissociate from the {100} surfaces with the aid of Cl- ions and preferentially redeposit to the corners and edges of the nanocubes when the capping agent polyvinylpyrrolidone is introduced, resulting in the formation of concave Pd nanocubes with distinctive high-index facets. Our work not only demonstrates a potential route for synthesizing NPs with well-defined high-index facets but also reveals the detailed atomic-scale kinetics during their formation, providing insight for future predictive synthesis.

12.
J Am Chem Soc ; 140(38): 11898-11901, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30179474

RESUMO

We report an indirect method for the effective replacement of ligands on the surface of Au nanocrystals with different morphologies. The method involves the deposition of an ultrathin layer of Ag to remove a strong capping agent such as cetyltrimethylammonium chloride (CTAC), followed by selective etching of the Ag layer in the presence of citrate ions as a stabilizer. Using multiple characterization techniques, we confirm that the surface of the Au nanocrystals is covered by citrate ions after the indirect ligand exchange process, and there is essentially no aggregation during the entire process. We also demonstrate that this method is effective in suppressing the toxicity of Au nanospheres by completely replacing the initially used CTAC with citrate.

13.
Acc Chem Res ; 50(4): 787-795, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28207240

RESUMO

Developing novel catalysts with high efficiency and selectivity is critical for enabling future clean energy conversion technologies. Interfaces in catalyst systems have long been considered the most critical factor in controlling catalytic reaction mechanisms. Interfaces include not only the catalyst surface but also interfaces within catalyst particles and those formed by constructing heterogeneous catalysts. The atomic and electronic structures of catalytic surfaces govern the kinetics of binding and release of reactant molecules from surface atoms. Interfaces within catalysts are introduced to enhance the intrinsic activity and stability of the catalyst by tuning the surface atomic and chemical structures. Examples include interfaces between the core and shell, twin or domain boundaries, or phase boundaries within single catalyst particles. In supported catalyst nanoparticles (NPs), the interface between the metallic NP and support serves as a critical tuning factor for enhancing catalytic activity. Surface electronic structure can be indirectly tuned and catalytically active sites can be increased through the use of supporting oxides. Tuning interfaces in catalyst systems has been identified as an important strategy in the design of novel catalysts. However, the governing principle of how interfaces contribute to catalyst behavior, especially in terms of interactions with intermediates and their stability during electrochemical operation, are largely unknown. This is mainly due to the evolving nature of such interfaces. Small changes in the structural and chemical configuration of these interfaces may result in altering the catalytic performance. These interfacial arrangements evolve continuously during synthesis, processing, use, and even static operation. A technique that can probe the local atomic and electronic interfacial structures with high precision while monitoring the dynamic interfacial behavior in situ is essential for elucidating the role of interfaces and providing deeper insight for fine-tuning and optimizing catalyst properties. Scanning transmission electron microscopy (STEM) has long been a primary characterization technique used for studying nanomaterials because of its exceptional imaging resolution and simultaneous chemical analysis. Over the past decade, advances in STEM, that is, the commercialization of both aberration correctors and monochromators, have significantly improved the spatial and energy resolution. Imaging atomic structures with subangstrom resolution and identifying chemical species with single-atom sensitivity are now routine for STEM. These advancements have greatly benefitted catalytic research. For example, the roles of lattice strain and surface elemental distribution and their effect on catalytic stability and reactivity have been well documented in bimetallic catalysts. In addition, three-dimensional atomic structures revealed by STEM tomography have been integrated in theoretical modeling for predictive catalyst NP design. Recent developments in stable electronic and mechanical devices have opened opportunities to monitor the evolution of catalysts in operando under synthesis and reaction conditions; high-speed direct electron detectors have achieved sub-millisecond time resolutions and allow for rapid structural and chemical changes to be captured. Investigations of catalysts using these latest microscopy techniques have provided new insights into atomic-level catalytic mechanisms. Further integration of new microscopy methods is expected to provide multidimensional descriptions of interfaces under relevant synthesis and reaction conditions. In this Account, we discuss recent insights on understanding catalyst activity, selectivity, and stability using advanced STEM techniques, with an emphasis on how critical interfaces dictate the performance of precious metal-based heterogeneous catalysts. The role of extended interfacial structures, including those between core and shell, between separate phases and twinned grains, between the catalyst surface and gas, and between metal and support are discussed. We also provide an outlook on how emerging electron microscopy techniques, such as vibrational spectroscopy and electron ptychography, will impact future catalysis research.

14.
Acc Chem Res ; 50(7): 1513-1520, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28682057

RESUMO

Lithium-ion batteries (LIBs) commercially dominate portable energy storage and have been extended to hybrid/electric vehicles by utilizing electrode materials with enhanced energy density. However, the energy density and cycling life of LIBs must extend beyond the current reach of commercial electrodes to meet the performance requirements for transportation applications. Carbon-based anodes, serving as the main negative electrodes in LIBs, have an intrinsic capacity limitation due to the intercalation mechanism. Some nanostructured carbon materials offer very interesting reversible capacities and can be considered as future anode materials. However, their fabrication processes are often complicated and expensive. Theoretically, using a lithium metal anode is the best way of delivering high energy density due to its largest theoretical capacity of more than 3800 mAh g-1; however, lithium metal is highly reactive with liquid electrolytes. Alternative anodes are being explored, including other lithium-reactive metals, such as Si, Ge, Zn, V, and so forth. These metals react reversibly with a large amount of Li per formula unit to form lithium-metal alloys, rendering these materials promising candidates for next-generation LIBs with high energy density. Though, most of these pure metallic anodes experience large volume changes during lithiation and delithiation processes that often results in cracking of the anode material and a loss electrical contact between the particles. Nanosized metal sulfides were recently found to possess better cycling stability and larger reversible capacities over pure metals. Further improvements and developments of metal sulfide-based anodes rely on a fundamental understanding of their electrochemical cycling mechanisms. Not only must the specific electrochemical reactions be correctly identified, but also the microstructural evolution upon electrochemical cycling, which often dictates the cyclability and stability of nanomaterials in batteries, must be clearly understood. Probing these dynamic evolution processes, i.e. the lithiation reactions and morphology evolutions, are often challenging. It requires both high-resolution chemical analysis and microstructural identification. In situ transmission electron microscopy (TEM) coupled with electron energy loss spectroscopy (EELS) has recently been raised as one of the most powerful techniques for monitoring electrochemical processes in anode materials for LIBs. In this work, we focus on elucidating the origin of the structural stability of SnS2 during electrochemical cycling by revealing the microstructural evolution of SnS2 upon lithiation using in situ TEM. Crystalline SnS2 was observed to undergo a two-step reaction after the initial lithium intercalation: (1) irreversible formation of metallic tin and amorphous lithium sulfide and (2) reversible transformation of metallic tin to Li-Sn alloys, which is determined to be the rate-determining step. More interestingly, it was discovered that a self-assembled composite framework formed during the irreversible conversion reaction, which has not been previously reported. Crystalline Sn nanoparticles are well arranged within an amorphous Li2S "matrix" in this self-assembled framework. This nanoscale framework confines the locations of individual Sn nanoparticles and prevents particle agglomeration during the subsequent cycling processes, therefore providing desired structural tolerance and warranting a sufficientelectron pathway. Our results not only explain the outstanding cycling stability of SnS2 over metallic tin anodes, but also provide important mechanistic insights into the design of high-performance electrodes for next-generation LIBs through the integration of a unique nanoframework.

15.
Nano Lett ; 16(10): 6644-6649, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27661446

RESUMO

Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt-Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt19Ag81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. After 10 000 cycles of potential cycling in the range of 0.60-1.0 V as in an accelerated durability test, the composition of the nanocages changed to Pt56Ag44, together with a specific activity of 1.23 mA cm-2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm-2) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O-O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg-1Pt, which was still about two times that of the pristine Pt/C catalyst (0.19 A mg-1Pt).

16.
J Am Chem Soc ; 138(6): 1768-71, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26794604

RESUMO

In a classic example of stability from instability, we show that Li2OHCl solid electrolyte forms a stable solid electrolyte interphase (SEI) layer with a metallic lithium anode. The Li2OHCl solid electrolyte can be readily achieved through simple mixing of LiOH and LiCl precursors at a mild processing temperature <400 °C. Additionally, we show that continuous, dense Li2OHCl membranes can be fabricated at temperatures <400 °C, standing in great contrast to current processing temperatures of >1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl system of crystalline solid electrolytes, where Li2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. To understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li2OHCl solid electrolyte.

17.
J Am Chem Soc ; 138(37): 12263-70, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27568848

RESUMO

We report a quantitative understanding of the reduction kinetics responsible for the formation of Pd-Pt bimetallic nanocrystals with two distinctive structures. The syntheses involve the use of KBr to manipulate the reaction kinetics by influencing the redox potentials of metal precursor ions via ligand exchange. In the absence of KBr, the ratio between the initial reduction rates of PdCl4(2-) and PtCl4(2-) was about 10.0, leading to the formation of Pd@Pt octahedra with a core-shell structure. In the presence of 63 mM KBr, the products became Pd-Pt alloy nanocrystals. In this case, the ratio between the initial reduction rates of the two precursors dropped to 2.4 because of ligand exchange and, thus, the formation of PdBr4(2-) and PtBr4(2-). The alloy nanocrystals took a cubic shape owing to the selective capping effect of Br(-) ions toward the {100} facets. Relative to the alloy nanocubes, the Pd@Pt core-shell octahedra showed substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). Specifically, the specific (1.51 mA cm(-2)) and mass (1.05 A mg(-1) Pt) activities of the core-shell octahedra were enhanced by about four- and three-fold relative to the alloy nanocubes (0.39 mA cm(-2) and 0.34 A mg(-1) Pt, respectively). Even after 20000 cycles of accelerated durability test, the core-shell octahedra still exhibited a mass activity of 0.68 A mg(-1) Pt, twice that of a pristine commercial Pt/C catalyst.

18.
Angew Chem Int Ed Engl ; 55(30): 8551-5, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27246874

RESUMO

All-solid-state sodium batteries, using solid electrolyte and abundant sodium resources, show great promise for safe, low-cost, and large-scale energy storage applications. The exploration of novel solid electrolytes is critical for the room temperature operation of all-solid-state Na batteries. An ideal solid electrolyte must have high ionic conductivity, hold outstanding chemical and electrochemical stability, and employ low-cost synthetic methods. Achieving the combination of these properties is a grand challenge for the synthesis of sulfide-based solid electrolytes. Design of the solid electrolyte Na3 SbS4 is described, realizing excellent air stability and an economic synthesis based on hard and soft acid and base (HSAB) theory. This new solid electrolyte also exhibits a remarkably high ionic conductivity of 1 mS cm(-1) at 25 °C and ideal compatibility with a metallic sodium anode.

19.
Adv Mater ; 36(16): e2302438, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38289273

RESUMO

Highly disordered amorphous Li7La3Zr2O12 (aLLZO) is a promising class of electrolyte separators and protective layers for hybrid or all-solid-state batteries due to its grain-boundary-free nature and wide electrochemical stability window. Unlike low-entropy ionic glasses such as LixPOyNz (LiPON), these medium-entropy non-Zachariasen aLLZO phases offer a higher number of stable structure arrangements over a wide range of tunable synthesis temperatures, providing the potential to tune the LBU-Li+ transport relation. It is revealed that lanthanum is the active "network modifier" for this new class of highly disordered Li+ conductors, whereas zirconium and lithium serve as "network formers". Specifically, within the solubility limit of La in aLLZO, increasing the La concentration can result in longer bond distances between the first nearest neighbors of Zr─O and La─O within the same local building unit (LBU) and the second nearest neighbors of Zr─La across two adjacent network-former and network-modifier LBUs, suggesting a more disordered medium- and long-range order structure in LLZO. These findings open new avenues for future designs of amorphous Li+ electrolytes and the selection of network-modifier dopants. Moreover, the wide yet relatively low synthesis temperatures of these glass-ceramics make them attractive candidates for low-cost and more sustainable hybrid- or all-solid-state batteries for energy storage.

20.
JACS Au ; 3(11): 3227-3236, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38034958

RESUMO

Transition metal single-atom catalysts (SACs) in uniform carbon nanospheres have gained tremendous interest as electrocatalysts owing to their low cost, high activity, and excellent selectivity. However, their preparation typically involves complicated multistep processes that are not practical for industrial use. Herein, we report a facile one-pot method to produce atomically isolated metal atoms with high loadings in uniform carbon nanospheres without any templates or postsynthesis modifications. Specifically, we use a chemical confinement strategy to suppress the formation of metal nanoparticles by introducing ethylenediaminetetraacetic acid (EDTA) as a molecular barrier to spatially isolate the metal atoms and thus generate SACs. To demonstrate the versatility of this synthetic method, we produced SACs from multiple transition metals, including Fe, Co, Cu, and Ni, with loadings as high as 3.87 wt %. Among these catalytic materials, the Fe-based SACs showed remarkable catalytic activity toward the oxygen reduction reaction (ORR), achieving an onset and half-wave potential of 1.00 and 0.831 VRHE, respectively, comparable to that of commercial 20 wt % Pt/C. Significantly, we were able to steer the ORR selectivity toward either energy generation or hydrogen peroxide production by simply changing the transition metal in the EDTA-based precursor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA