Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 30(15): e202303525, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38149791

RESUMO

Polymer electrolyte membrane fuel cells (PEMFCs) represent a promising clean energy solution. However, their widespread adoption faces hurdles related to component optimization. This review explores the pivotal role of ionic liquids (ILs) in enhancing PEMFC performance, focusing on their role in polymer electrolyte membranes, catalyst modification, and other components. By addressing key obstacles, including proton conductivity, catalyst stability, and fuel crossover, ILs provide a pathway towards the widespread commercialization of PEMFCs. In the realm of PEMFC membranes, ILs have shown great potential in improving proton conductivity, mechanical strength, and thermal stability. Additionally, the utilization of ILs as catalyst modifiers has shown promise in enhancing the electrocatalytic activity of electrodes by serving as an effective stabilizer to promote the dispersion of metal nanoparticles, and reduce their agglomeration, thereby augmenting catalytic performance. Furthermore, ILs can be tailored to optimize the catalyst-support interaction, ultimately enhancing the overall fuel cell efficiency. Their unique properties, such as high oxygen solubility and low volatility, offer advantages in terms of reducing mass transport and water management issues. This review not only underscores the promising advancements achieved thus far but also outlines the challenges that must be addressed to unlock the full potential of ILs in PEMFC technology, offering a valuable resource for researchers and engineers working toward the realization of efficient and durable PEMFCs.

2.
Nanotechnology ; 31(43): 435401, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-32610307

RESUMO

Today, two-dimensional materials for use in energy devices have attracted the attention of researchers. Molybdenum disulfide is promising as an electrode material with unique physical properties and a high exposed surface area. However, there are still problems that need to be addressed. In this study, we prepared a hybrid containing MoS2, Fe3O4, and reduced graphene oxide (rGO) by a two-step hydrothermal method. This nanocomposite is well structurally and morphologically identified, and its electrochemical performance is then evaluated for use in supercapacitors. According to the galvanostatic charge-discharge results, this nanocomposite shows a good specific capacity, equivalent to 527 F g-1 at 0.5 mA cm-2. The results of the multi-cycle stability test (5000 cycles) indicate a significant stability rate capability, with 93% of the electrode capacity remaining after 5000 cycles. The reason for this could be the synergistic effect between rGO and MoS2 as well as between molybdenum and iron in the faradic reaction in the charge storage process. Fe3O4 and MoS2 provide electroactive sites for the faradic process and electrolyte accessibility and rGO supply conductivity.

3.
Phys Chem Chem Phys ; 22(5): 2917-2929, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31951238

RESUMO

In this research, deep eutectic solvents (DESs) were prepared and employed as the electrolyte in Nafion membranes. Different factors, such as the water content and Nafion counterions (H+, Li+, Na+ and K+), which could influence the PEM performance, were evaluated. The obtained results showed that the presence of water may have a constructive or destructive effect on the DES and Nafion/DES properties, which should be considered for their final applications. Also, the electronegativity of the counterion can significantly influence the Nafion/DES proton conductivity. The prepared Nafion/DES composite membranes showed superconducting properties as a result of a Grotthuss-like mechanism for proton conduction. The conductivities of the prepared membranes were compared to those of other membranes based on an upper bound concept, which showed the potential use of DESs as a promising alternative to conventional ionic liquids. Finally, the fuel cell performances of the prepared membranes at different temperatures were evaluated.

4.
Sci Rep ; 13(1): 8238, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217638

RESUMO

Proton exchange membrane fuel cells (PEMFC) have received a lot of interest and use metal-organic frameworks (MOF)/polymer nanocomposite membranes. Zeolite imidazole framework-90 (ZIF-90) was employed as an addition in the sulfonated poly (1, 4-phenylene ether-ether-sulfone) (SPEES) matrix in order to investigate the proton conductivity in a novel nanocomposite membrane made of SPEES/ ZIF. The high porosity, free surface, and presence of the aldehyde group in the ZIF-90 nanostructure have a substantial impact on enhancing the mechanical, chemical, thermal, and proton conductivity capabilities of the SPEES/ZIF-90 nanocomposite membranes. The results indicate that the utilization of SPEES/ZIF-90 nanocomposite membranes with 3wt% ZIF-90 resulted in enhanced proton conductivity of up to 160 mS/cm at 90 °C and 98% relative humidity (RH). This is a significant improvement compared to the SPEES membrane which exhibited a proton conductivity of 55 mS/cm under the same conditions, indicating a 1.9-fold increase in performance. Furthermore, the SPEES/ZIF-90/3 membrane exhibited a remarkable 79% improvement in maximum power density, achieving a value of 0.52 W/cm2 at 0.5 V and 98% RH, which is 79% higher than that of the pristine SPEES membrane.

5.
Materials (Basel) ; 14(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947499

RESUMO

The present study sought to analyze a novel type of polymer membrane fuel cell to be used in vehicles. The performance of the fuel cell was evaluated by modeling the types of production-consumption heat in the anode and cathode (including half-reaction heat, activation heat, and absorption/desorption heat) and waterflood conditions. The meshing of flow channels was carried out by square cells and the governing equations were numerically discretized in the steady mode using the finite difference method followed by solving in MATLAB software. Based on the simulation results, the anodic absorption/desorption heat, anodic half-reaction heat, and cathodic activation heat are positive while the cathodic absorption/desorption heat and cathodic half-reaction heat show negative values. All heat values exhibit a decremental trend over the flow channel. Considering the effect of relative humidity, the relative humidity of the cathode showed no significant change while the anode relative humidity decreased along the flow channel. The velocity at the membrane layer was considerably lower, due to the smaller permeability coefficient of this layer compared to the gas diffusion and reactants (cathode) layers.

6.
Sci Rep ; 11(1): 4926, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649374

RESUMO

In this study, new nanocomposite membranes from sulfonated poly (ether ether ketone) (SPEEK) and proton-conducting Fe2TiO5 nanoparticles are prepared by the solution casting method. Sulfonated core-shell Fe2TiO5 nanoparticles are synthesized by redox polymerization. Therefore, 4-Vinyl benzene sulfonate (VBS) and 2-acrylamide-2-methyl-1-propane sulfonic acid (AMPS) are grafted on the surface of nanoparticles through radical polymerization. The different amounts of hybrid nanoparticles (PAMPS@Fe2TiO5 and PVBS@Fe2TiO5) are incorporated into the SPEEK matrix. The results show higher proton conductivity for all prepared nanocomposites than that of the SPEEK membrane. Embedding the sulfonated Fe2TiO5 nanoparticles into the SPEEK membrane improves proton conductivity by creating the new proton conducting sites. Besides, the nanocomposite membranes showed improved mechanical and dimensional stability in comparison with that of the SPEEK membrane. Also, the membranes including 2 wt% of PAMPS@Fe2TiO5 and PVBS@Fe2TiO5 nanoparticles indicate the maximum power density of 247 mW cm-2 and 226 mW cm-2 at 80 °C, respectively, which is higher than that of for the pristine membrane. Our prepared membranes have the potential for application in polymer electrolyte fuel cells.

7.
RSC Adv ; 10(5): 2709-2721, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35496125

RESUMO

The purpose of this work is to enhance the proton conductivity and fuel cell performance of sulfonated poly(phthalazinone ether ketone) (SPPEK) as a proton exchange membrane through the application of SrTiO3 perovskite nanoparticles. Nanocomposite membranes based on SPPEK and SrTiO3 perovskite nanoparticles were prepared via a casting method. The highest proton conductivity of nanocomposite membranes obtained was 120 mS cm-1 at 90 °C and 95% RH. These enhancements could be related to the hygroscopic structure of SrTiO3 perovskite nanoparticles and the formation of hydrogen bonds between nanoparticles and water molecules. The satisfactory power density, 0.41 W cm-2 at 0.5 V and 85 °C, of the nanocomposite membrane (5 wt% content of nanoparticles) confirms their potential for application in the PEM fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA