Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Nature ; 611(7935): 289-294, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36352136

RESUMO

The discovery of a method to separate isotopologues, molecular entities that differ in only isotopic composition1, is fundamentally and technologically essential but remains challenging2,3. Water isotopologues, which are very important in biological processes, industry, medical care, etc. are among the most difficult isotopologue pairs to separate because of their very similar physicochemical properties and chemical exchange equilibrium. Herein, we report efficient separation of water isotopologues at room temperature by constructing two porous coordination polymers (PCPs, or metal-organic frameworks) in which flip-flop molecular motions within the frameworks provide diffusion-regulatory functionality. Guest traffic is regulated by the local motions of dynamic gates on contracted pore apertures, thereby amplifying the slight differences in the diffusion rates of water isotopologues. Significant temperature-responsive adsorption occurs on both PCPs: H2O vapour is preferentially adsorbed into the PCPs, with substantially increased uptake compared to that of D2O vapour, facilitating kinetics-based vapour separation of H2O/HDO/D2O ternary mixtures with high H2O separation factors of around 210 at room temperature.

2.
J Am Chem Soc ; 146(26): 17793-17800, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38913361

RESUMO

Crystal-to-glass transformation is a powerful approach to modulating the chemical and physical properties of crystals. Here we demonstrate that the glass transformation of cobalt hexacyanoferrate crystals, one of the Prussian blue analogues, increased the concentration of open metal sites and altered the electronic state while maintaining coordination geometries and short-range ordering in the structure. The compositional and structural changes were characterized by X-ray absorption fine structure, energy dispersive X-ray spectroscopy, and X-ray total scattering. The changes contribute to the flat band potential of the glass becoming closer to the redox potential of CO2 reduction. The valence band energy of the glass also shifts, resulting in lower band gap energy. Both the increased open metal sites and the optimal electronic structure upon vitrification enhance photocatalytic activity toward CO2-to-CO conversions (9.9 µmol h-1 CO production) and selectivity (72.4%) in comparison with the crystalline counterpart (3.9 µmol h-1 and 42.8%).

3.
J Am Chem Soc ; 146(13): 9311-9317, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502926

RESUMO

A π-conjugated molecule with one electronic spin often forms a π-stacked dimer through molecular orbital interactions between two unpaired electrons. The bonding is recognized as a multicentered two-electron interaction between the two π-conjugated molecules. Here, we disclose a multicentered bonding interaction between two antiaromatic molecules involving four electrons. We have synthesized an antiaromatic porphyrin analogue, Ni(II) bis(pentafluorophenyl)norcorrole. Its dimer adopts a face-to-face stacked structure with an extremely short stacking distance of 2.97 Å. The close stacking originates from a multicenter four-electron bonding interaction between the two molecules. The bonding electrons were experimentally observed via synchrotron X-ray diffraction analysis and corroborated by theoretical calculations. The intermolecular interaction of the molecular orbitals imparts the stacked dimer with aromatic character that is distinctly different from that of its monomer.

4.
Chem Rev ; 122(3): 4163-4203, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35044749

RESUMO

The crystal-liquid-glass phase transition of coordination polymers (CPs) and metal-organic frameworks (MOFs) offers attractive opportunities as a new class of amorphous materials. Unlike conventional glasses, coordination chemistry allows the utilization of rational design concepts to fine-tune the desired properties. Although the glassy state has been rare in CPs/MOFs, it exhibits diverse advantages complementary to their crystalline counterparts, including improved mass transport, optical properties, mechanical properties, and the ability to form grain-boundary-free monoliths. This Review discusses the current achievements in improving the understanding of anomalous phase transitions in CPs/MOFs. We elaborate on the criteria for classifying CP/MOF glasses and comprehensively discuss the three common strategies employed to obtain a glassy state. We include all CP/MOF glass research progress since its inception, discuss the current challenges, and express our perspective on future research directions.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Metais , Polímeros
5.
Angew Chem Int Ed Engl ; 63(21): e202401005, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38584128

RESUMO

Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure-activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a "modular design" strategy to construct electrochemically stable semiconducting PCP, namely, Fe-pyNDI, which incorporates a chain-type Fe-pyrazole metal cluster and π-stacking column with effective synergistic effects. The three-dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π-stacking column in Fe-pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe-pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 µmol h-1 cm-2 (14677 µg h-1 mgcat. -1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state-of-the-art electrocatalysts. The in-situ X-ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe-pyNDI can be kept, while part of the Fe3+ in Fe-pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR.

6.
J Am Chem Soc ; 145(17): 9808-9814, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37074761

RESUMO

Optically switchable proton-conductive materials will enable the development of artificial ionic circuits. However, most switchable platforms rely on conformational changes in crystals to alter the connectivity of guest molecules. Guest dependency, low transmittance, and poor processability of polycrystalline materials hinder overall light responsiveness and contrast between on and off states. Here, we optically control anhydrous proton conductivity in a transparent coordination polymer (CP) glass. Photoexcitation of tris(bipyrazine)ruthenium(II) complex in CP glass causes reversible increases in proton conductivity by a factor of 181.9 and a decrease in activation energy barrier from 0.76 eV to 0.30 eV. Modulating light intensity and ambient temperature enables total control of anhydrous protonic conductivity. Spectroscopies and density functional theory studies reveal the relationship between the presence of proton deficiencies and the decreasing activation energy barrier for proton migrations.

7.
J Am Chem Soc ; 145(43): 23691-23701, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862452

RESUMO

Ni- and Co-based catalysts with added Fe demonstrate promising activity in the oxygen evolution reaction (OER) during alkaline water electrolysis, with the presence of Fe in a certain quantity being crucial for their enhanced performance. The mode of incorporation, local placement, and structure of Fe ions in the host catalyst, as well as their direct/indirect contribution to enhancing the OER activity, remain under active investigation. Herein, the mechanism of Fe incorporation into a Co-based host was investigated using an in situ synthesized Co-Fe catalyst in an alkaline electrolyte containing Co2+ and Fe3+. Fe was found to be uniformly incorporated, which occurs solely after the anodic deposition of the Co host structure and results in exceptional OER activity with an overpotential of 319 mV at 10 mA cm-2 and a Tafel slope of 28.3 mV dec-1. Studies on the lattice structure, chemical oxidation states, and mass changes indicated that Fe is incorporated into the Co host structure by replacing the Co3+ sites with Fe3+ from the electrolyte. Operando Raman measurements revealed that the presence of doped Fe in the Co host structure reduces the transition potential of the in situ Co-Fe catalyst to the OER-active phase CoO2. The findings of our facile synthesis of highly active and stable Co-Fe particle catalysts provide a comprehensive understanding of the role of Fe in Co-based electrocatalysts, covering aspects that include the incorporation mode, local structure, placement, and mechanistic role in enhancing the OER activity.

8.
J Am Chem Soc ; 145(26): 14456-14465, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37350764

RESUMO

Porous liquids (PLs) are attractive materials because of their capability to combine the intrinsic porosity of microporous solids and the processability of liquids. Most of the studies focus on the synthesis of PLs with not only high porosity but also low viscosity by considering their transportation in industrial plants. However, a gap exists between PLs and solid adsorbents for some practical cases, where the liquid characteristics and mechanical stability without leakage are simultaneously required. Here, we fill in this gap by demonstrating a new concept of pore-networked gels, in which the solvent phase is trapped by molecular networks with accessible porosity. To achieve this, we fabricate a linked metal-organic polyhedra (MOPs) gel, followed by exchanging the solvent phase with a bulky liquid such as ionic liquids (ILs); the dimethylformamide solvent trapped inside the as-synthesized gel is replaced by the target IL, 1-butyl-3-methylimidazolium tetrafluoroborate, which in turn cannot enter MOP pores due to their larger molecular size. The remaining volatile solvents in the MOP cavities can then be removed by thermal activation, endowing the obtained IL gel (Gel_IL) with accessible microporosity. The CO2 capacities of the gels are greatly enhanced compared to the neat IL. The exchange with the IL also exerts a positive influence on the final gel performances such as mechanical properties and low volatility. Besides ILs, various functional liquids are shown to be amenable to this strategy to fabricate pore-networked gels with accessible porosity, demonstrating their potential use in the field of gas adsorption or separation.

9.
Small ; 19(14): e2205988, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36703506

RESUMO

Chemical diversification of hybrid organic-inorganic glasses remains limited, especially compared to traditional oxide glasses, for which property tuning is possible through addition of weakly bonded modifier cations. In this work, it is shown that water can depolymerize polyhedra with labile metal-ligand bonds in a cobalt-based coordination network, yielding a series of nonstoichiometric glasses. Calorimetric, spectroscopic, and simulation studies demonstrate that the added water molecules promote the breakage of network bonds and coordination number changes, leading to lower melting and glass transition temperatures. These structural changes modify the physical and chemical properties of the melt-quenched glass, with strong parallels to the "modifier" concept in oxides. It is shown that this approach also applies to other transition metal-based coordination networks, and it will thus enable diversification of hybrid glass chemistry, including nonstoichiometric glass compositions, tuning of properties, and a significant rise in the number of glass-forming hybrid systems by allowing them to melt before thermal decomposition.

10.
Inorg Chem ; 62(29): 11342-11349, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37432910

RESUMO

Transparent and grain boundary-free substrates are essential to immobilize molecular photocatalysts for efficient photoirradiation reactions without unexpected light scattering and absorption by the substrates. Herein, membranes of coordination polymer glass immobilizing metalloporphyrins were examined as a heterogeneous photocatalyst for carbon dioxide (CO2) reduction under visible-light irradiation. [Zn(HPO4)(H2PO4)2](ImH2)2 (Im = imidazolate) liquid containing iron(III) 5,10,15,20-tetraphenyl-21H,23H-porphine chloride (Fe(TPP)Cl, 0.1-0.5 w/w%) was cast on a borosilicate glass substrate, followed by cooling to room temperature, resulting in transparent and grain boundary-free membranes with the thicknesses of 3, 5, and 9 µm. The photocatalytic activity of the membranes was in proportion to the membrane thickness, indicating that Fe(TPP)Cl in the subsurface of membranes effectively absorbed light and contributed to the reactions. The membrane photocatalysts were intact during the photocatalytic reaction and showed no recrystallization or leaching of Fe(TPP)Cl.

11.
Nano Lett ; 22(23): 9372-9379, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36441580

RESUMO

We investigated a mechanism of crystal melting and crystallization behavior of a two-dimensional coordination polymer [Ag2(L1)(CF3SO3)2] (1, L1 = 4,4'-biphenyldicarbonitrile) upon heating-cooling processes. The crystal showed melting at 282 °C, and the following gentle cooling induced the abrupt crystallization at 242 °C confirmed by DSC. A temperature-dependent structural change has been discussed through calorimetric, spectroscopic, and mechanical measurements. They indicated that the coordination-bond networks are partially retained in the melt state, but the melt showed a significantly low viscosity of 9.8 × 10-2 Pa·s at Tm which is six orders lower than that of ZIF-62 at Tm (435 °C). Rheological studies provided an understanding of the fast relaxation dynamics for the recrystallization process, along with that the high Tm provides enough thermal energy to crossover the activation energy barrier for the nucleation. The isothermal crystallization kinetics through calorimetric measurements with applying the Avrami equation identified the nature of the nuclei and its crystal growth mechanism.


Assuntos
Polímeros , Cristalização , Cinética , Polímeros/química , Varredura Diferencial de Calorimetria , Transição de Fase
12.
Angew Chem Int Ed Engl ; 62(47): e202312095, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37743667

RESUMO

Crystalline triazine-based covalent organic frameworks (COFs) are aromatic nitrogen-rich porous materials. COFs typically show high thermal/chemical stability, and are promising for energy applications, but often require harsh synthesis conditions and suffer from low crystallinity. In this work, we propose an environmentally friendly route for the synthesis of crystalline COFs from CO2 molecules as a precursor. The mass ratio of CO2 conversion into COFs formula unit reaches 46.3 %. The synthesis consists of two steps; preparation of 1,4-piperazinedicarboxaldehyde from CO2 and piperazine, and condensation of the dicarboxaldehyde and melamine to construct the framework. The CO2 -derived COF has a 3-fold interpenetrated structure of 2D layers determined by powder X-ray diffraction, high-resolution transmission electron microscopy, and select-area electron diffraction. The structure shows a high Brunauer-Emmett-Teller surface area of 945 m2 g-1 and high stability against strong acid (6 M HCl), base (6 M NaOH), and boiling water over 24 hours. Post-modification of the framework with oxone has been demonstrated to modulate hydrophilicity, and it exhibits proton conductivity of 2.5×10-2  S cm-1 at 85 °C, 95 % of relative humidity.

13.
Angew Chem Int Ed Engl ; 62(2): e202215234, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36377418

RESUMO

Exploring new porous coordination polymers (PCPs) that have tunable structure and conductivity is attractive but remains challenging. Herein, fine pore structure engineering by ligand conformation control of naphthalene diimide (NDI)-based semiconducting PCPs with π stacking-dependent conductivity tunability is achieved. The π stacking distances and ligand conformation in these isoreticular PCPs were modulated by employing metal centers with different coordination geometries. As a result, three conjugated PCPs (Co-pyNDI, Ni-pyNDI, and Zn-pyNDI) with varying pore structure and conductivity were obtained. Their crystal structures were determined by three-dimensional electron diffraction. The through-space charge transfer and tunable pore structure in these PCPs result in modulated selectivity and sensitivity in gas sensing. Zn-pyNDI can serve as a room-temperature operable chemiresistive sensor selective to acetone.

14.
J Am Chem Soc ; 144(42): 19475-19484, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36222467

RESUMO

Metal-organic polyhedra (MOPs) are molecular porous units in which desired functionalities can be installed with precise geometrical and compositional control. By combing two complementary chemical moieties, such as sulfonic acid groups and Rh(II)-carboxylate paddlewheel, we synthesized a robust water-soluble cuboctahedral MOP with excellent features in both solution and solid states. Herein, we demonstrate that the superior chemical stability of the Rh2 unit and the elevated number of functional groups on the surface (24 per cage) result in a porous cage with high solubility and stability in water, including acidic, neutral, and basic pH conditions. We also prove that the sulfonic acid-rich form of the cage can be isolated through postsynthetic acid treatment. This transformation involves an improved gas uptake capacity and the capability to reversibly assemble the cages into a three-dimensional (3D) metal-organic framework (MOF) structure. Likewise, this sulfonic acid functionalization provides both MOP and MOF solids with high proton conductivities (>10-3 S cm-1), comparable to previously reported high conducting metal-organic materials. The influence of the MOP-to-MOF processing in the gas adsorption capacity indicates that this structural transformation can provide materials with higher and more controllable porous properties. These results illustrate the high potential of acidic MOPs as more flexible porous building units in terms of processability, structural complexity, and tunability of the properties.

15.
J Am Chem Soc ; 144(40): 18619-18628, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36190375

RESUMO

Superprotonic phase transition in CsHSO4 allows fast protonic conduction, but only at temperatures above the transition temperature of 141 °C (Tc). Here, we preserve the superprotonic conductivity of CsHSO4 by forming a binary CsHSO4-coordination polymer glass system, showing eutectic melting. Their anhydrous proton conductivities below Tc are at least 3 orders of magnitude higher than CsHSO4 without compromising conductivity at higher temperatures or the need for humidification, reaching 6.3 mS cm-1 at 180 °C. The glass also introduces processability to the conductor, as its viscosity below 103 Pa·s can be achieved at 65 °C. Solid-state NMR and X-ray pair distribution functions reveal the oxyanion exchanges and the origin of the preserved conductivity. Finally, we demonstrate the preparation of a micrometer-scale thin-film proton conductor showing low resistivity with high transparency (transmittance >85% between 380-800 nm).

16.
J Am Chem Soc ; 144(15): 6861-6870, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35315656

RESUMO

Hypercrosslinked polymers (HCPs), amorphous microporous three-dimensional networks based on covalent linkage of organic building blocks, are a promising class of materials due to their high surface area and easy functionalization; however, this type of material lacks processability due to its network rigidity based on covalent crosslinking. Indeed, the development of strategies to improve its solution processability for broader applications remains challenging. Although HCPs have similar three-dimensionally crosslinked networks to polymer gels, HCPs usually do not form gels but insoluble powders. Herein, we report the synthesis of HCP gels from a thermally induced polymerization of a tetrahedral monomer, which undergoes consecutive solubilization, covalent bond formation, colloidal formation, followed by their aggregation and percolation to yield a hierarchically porous network. The resulting gels feature concentration-dependent hierarchical porosities and mechanical stiffness. Furthermore, these HCP gels can be used as a platform to achieve molecular-level hybridization with a two-dimensional polymer during the HCP gel formation. This method provides functional gels and corresponding aerogels with the enhancement of porosities and mechanical stiffness. Used in column- and membrane-based molecular separation systems, the hybrid gels exhibited a separation of water contaminants with the efficiency of 97.9 and 98.6% for methylene blue and KMnO4, respectively. This result demonstrated the potentials of the HCP gels and their hybrid derivatives in separation systems requiring macroscopic scaffolds with hierarchical porosity.


Assuntos
Polímeros , Géis/química , Polimerização , Polímeros/química , Porosidade
17.
Inorg Chem ; 61(40): 16103-16109, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36154003

RESUMO

Glassy-state coordination polymers (CPs) are a new class of network-forming glasses. In this work, we constructed glass-forming CPs composed of both anionic and neutral ligands as network formers. With the use of hexafluoro anions (MF62-) and 1,3-bis(4-pyridyl)propane (bpp), two isostructural CP crystals, [Zn(SiF6)(bpp)2] (ZnSi) and [Zn(TiF6)(bpp)2] (ZnTi), were synthesized. Solid-state 19F NMR revealed rotational motion of MF62- with dissociation and re-formation of the Zn-F coordination bonds in both CP crystals, which reflects the thermodynamic parameters related to the glass formability. The mobility of SiF62- is larger than that of TiF62-, suggesting a higher glass formability of ZnSi. When mechanical ball milling was conducted, ZnSi completely changed into a glassy state, whereas ZnTi showed incomplete glass formation. Examination of the amorphous structures elucidated retention and partial destruction of the Zn-F coordination bonds in ball-milled ZnSi and ZnTi, respectively. These results provide the relationship between the ligand dynamics and glass formability of CPs.

18.
Inorg Chem ; 61(8): 3379-3386, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35172569

RESUMO

Mechanical force can be employed not only to efficiently synthesize new materials under environmentally friendly conditions but also to change the macroscopic and microscopic properties of materials. Although coordination polymers (CPs) are attractive functional materials because they possess high structural designability and diversity, mechanical force-induced structural and functional changes of CPs are challenging issues. In this study, two one-dimensional CPs, one a densely packed nonporous CP [Cu2(bza)4(pyr)] (1) and the other a porous CP [Cu2(1-nap)4(pyr)] (2) (bza = benzoate, 1-nap = 1-naphthoate and pyr = pyrimidine), were subjected to ball-milling to assess the effect of mechanical force on their porosities. Ball mill treatments were found to induce an amorphization and cause a 30 fold enhancement of the CO2 adsorption amount at 195 K and P/P0 ∼ 1 for 1 and a slightly decreased CO2 adsorption amount for 2. The results of thorough characterization studies suggest that the formation of extrinsic micropores in addition to extrinsic mesopores/macropores between particles takes place by ball milling.

19.
Nano Lett ; 21(15): 6382-6390, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34282614

RESUMO

Melt and glassy states of coordination polymers (CPs)/metal-organic frameworks (MOFs) have gained attention as a new class of amorphous materials. Many bridging ligands such as azolate, nitrile, thiocyanide, thiolate, pyridine, sulfonate, and amide are available to construct crystals with melting temperatures in the range of 60-593 °C. Here, we discuss the mechanism of crystal melting, glass structures, and mechanical properties by considering both experimental and theoretical studies. High and exclusive H+ or Li+ conductivities in moldable CP glasses have been proven in the all-solid-state devices such as fuel cells or secondary batteries. Transparent glasses with wide composition and available dopants are also attractive for nonlinear optics, photoconductivity, emission, and light-harvesting. The ongoing challenge in the field is to develop the design principles of CP/MOF melts and glasses, corresponding functions of mass (ion, electron, photon, phonon, and so forth). transport and conversion, and the integration of devices with the use of their tunable mechanical properties.

20.
Angew Chem Int Ed Engl ; 61(2): e202110695, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34708895

RESUMO

Although covalent organic frameworks (COFs) with a graphene-like structure present unique chemical and physical properties, they are essentially insoluble and infusible crystalline powders with poor processability, hindering their further practical applications. How to improve the processability of COF materials is a major challenge in this field. In this contribution, we proposed a general side-chain engineering strategy to construct a gel-state COF with high processability. This method takes advantages of large and soft branched alkyl side chains as internal plasticizers to achieve the gelation of the COF. We systematically studied the influence of the length of the side chain on the COF gel formation. Benefitting from their machinability and flexibility, this novel COF gel can be easily processed into gel-type electrolytes with specific shape and thickness, which were further applied to assemble lithium-ion batteries that exhibited high cycling stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA