Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 15(10): 6290-4, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26325603

RESUMO

Bright single photon sources have recently been obtained by inserting solid-state emitters in microcavities. Accelerating the spontaneous emission via the Purcell effect allows both high brightness and increased operation frequency. However, achieving Purcell enhancement is technologically demanding because the emitter resonance must match the cavity resonance. Here, we show that this spectral matching requirement is strongly lifted by the phononic environment of the emitter. We study a single InGaAs quantum dot coupled to a micropillar cavity. The phonon assisted emission, which hardly represents a few percent of the dot emission at a given frequency in the absence of cavity, can become the main emission channel by use of the Purcell effect. A phonon-tuned single photon source with a brightness greater than 50% is demonstrated over a detuning range covering 10 cavity line widths (0.8 nm). The same concepts applied to defects in diamonds pave the way toward ultrabright single photon sources operating at room temperature.

2.
Phys Rev Lett ; 114(19): 193601, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024171

RESUMO

We investigate theoretically the generation of indistinguishable single photons from a strongly dissipative quantum system placed inside an optical cavity. The degree of indistinguishability of photons emitted by the cavity is calculated as a function of the emitter-cavity coupling strength and the cavity linewidth. For a quantum emitter subject to strong pure dephasing, our calculations reveal that an unconventional regime of high indistinguishability can be reached for moderate emitter-cavity coupling strengths and high-quality factor cavities. In this regime, the broad spectrum of the dissipative quantum system is funneled into the narrow line shape of the cavity. The associated efficiency is found to greatly surpass spectral filtering effects. Our findings open the path towards on-chip scalable indistinguishable-photon-emitting devices operating at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA