Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 16(1): 240, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27809774

RESUMO

BACKGROUND: Phenotypic variation is determined by a combination of genotype, environment and their interactions. The realization that allelic diversity can be both genetic and epigenetic allows the environmental component to be further separated. Partitioning phenotypic variation observed among inbred lines with an altered epigenome can allow the epigenetic component controlling quantitative traits to be estimated. To assess the contribution of epialleles on phenotypic variation and determine the fidelity with which epialleles are inherited, we have developed a novel hypomethylated population of strawberry (2n = 2x = 14) using 5-azacytidine from which individuals with altered phenotypes can be identified, selected and characterized. RESULTS: The hypomethylated population was generated using an inbred strawberry population in the F. vesca ssp. vesca accession Hawaii 4. Analysis of whole genome sequence data from control and hypomethylated lines indicate that 5-azacytidine exposure does not increase SNP above background levels. The populations contained only Hawaii 4 alleles, removing introgression of alternate F. vesca alleles as a potential source of variation. Although genome sequencing and genetic marker data are unable to rule out 5-azacytidine induced chromosomal rearrangements as a potential source of the trait variation observed, none were detected in our survey. Quantitative trait variation focusing on flowering time and rosette diameter was scored in control and treated populations where expanded levels of variation were observed among the hypomethylated lines. Methylation sensitive molecular markers indicated that 5-azacytidine induced alterations in DNA methylation patterns and inheritance of methylation patterns were confirmed by bisulfite sequencing of targeted regions. It is possible that methylation polymorphisms might underlie or have induced genetic changes underlying the observable differences in quantitative phenotypes. CONCLUSIONS: This population developed in a uniform genetic background provides a resource for the discovery of new variation controlling quantitative traits. Genome sequence analysis indicates that 5-azacytidine did not induce point mutations and the induced variation is largely restricted to DNA methylation. Using this resource, we have identified new variation and demonstrated the inheritance of both variant trait and methylation patterns. Although direct associations remain to be determined, these data suggest epigenetic variation might be subject to selection.


Assuntos
Metilação de DNA , Epigênese Genética , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Característica Quantitativa Herdável , Azacitidina/farmacologia , Inibidores Enzimáticos/farmacologia , Fenótipo
2.
Nat Plants ; 6(8): 929-941, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32782408

RESUMO

It is only recently, with the advent of long-read sequencing technologies, that we are beginning to uncover previously uncharted regions of complex and inherently recursive plant genomes. To comprehensively study and exploit the genome of the neglected oilseed Brassica nigra, we generated two high-quality nanopore de novo genome assemblies. The N50 contig lengths for the two assemblies were 17.1 Mb (12 contigs), one of the best among 324 sequenced plant genomes, and 0.29 Mb (424 contigs), respectively, reflecting recent improvements in the technology. Comparison with a de novo short-read assembly corroborated genome integrity and quantified sequence-related error rates (0.2%). The contiguity and coverage allowed unprecedented access to low-complexity regions of the genome. Pericentromeric regions and coincidence of hypomethylation enabled localization of active centromeres and identified centromere-associated ALE family retro-elements that appear to have proliferated through relatively recent nested transposition events (<1 Ma). Genomic distances calculated based on synteny relationships were used to define a post-triplication Brassica-specific ancestral genome, and to calculate the extensive rearrangements that define the evolutionary distance separating B. nigra from its diploid relatives.


Assuntos
Brassica/genética , Centrômero/genética , Genoma de Planta/genética , Mostardeira/genética , DNA de Plantas/genética , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA