Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 319(5): F876-F884, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017192

RESUMO

Renal injury leads to chronic kidney disease, with which women are not only more likely to be diagnosed than men but have poorer outcomes as well. We have previously shown that expression of small proline-rich region 2f (Sprr2f), a member of the small proline-rich region (Sprr) gene family, is increased several hundredfold after renal injury using a unilateral ureteral obstruction (UUO) mouse model. To better understand the role of Sprr2f in renal injury, we generated a Sprr2f knockout (Sprr2f-KO) mouse model using CRISPR-Cas9 technology. Sprr2f-KO female mice showed greater renal damage after UUO compared with wild-type (Sprr2f-WT) animals, as evidenced by higher hydroxyproline levels and denser collagen staining, indicating a protective role of Sprr2f during renal injury. Gene expression profiling by RNA sequencing identified 162 genes whose expression levels were significantly different between day 0 and day 5 after UUO in Sprr2f-KO mice. Of the 162 genes, 121 genes were upregulated after UUO and enriched with those involved in oxidation-reduction, a phenomenon not observed in Sprr2f-WT animals, suggesting a protective role of Sprr2f in UUO through defense against oxidative damage. Consistently, bilateral ischemia-reperfusion injury resulted in higher serum blood urea nitrogen levels and higher tissue reactive oxygen species in Sprr2f-KO compared with Sprr2f-WT female mice. Moreover, cultured renal epithelial cells from Sprr2f-KO female mice showed lower viability after oxidative damage induced by menadione compared with Sprr2f-WT cells that could be rescued by supplementation with reduced glutathione, suggesting that Sprr2f induction after renal damage acts as a defense against reactive oxygen species.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Células Epiteliais/metabolismo , Rim/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Proteínas Ricas em Prolina do Estrato Córneo/genética , Modelos Animais de Doenças , Feminino , Túbulos Renais/metabolismo , Camundongos Knockout , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Obstrução Ureteral/patologia
2.
New Phytol ; 218(2): 594-603, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29451311

RESUMO

Crop yield depends on efficient allocation of sucrose from leaves to seeds. In Arabidopsis, phloem loading is mediated by a combination of SWEET sucrose effluxers and subsequent uptake by SUT1/SUC2 sucrose/H+ symporters. ZmSUT1 is essential for carbon allocation in maize, but the relative contribution to apoplasmic phloem loading and retrieval of sucrose leaking from the translocation path is not known. Here we analysed the contribution of SWEETs to phloem loading in maize. We identified three leaf-expressed SWEET sucrose transporters as key components of apoplasmic phloem loading in Zea mays L. ZmSWEET13 paralogues (a, b, c) are among the most highly expressed genes in the leaf vasculature. Genome-edited triple knock-out mutants were severely stunted. Photosynthesis of mutants was impaired and leaves accumulated high levels of soluble sugars and starch. RNA-seq revealed profound transcriptional deregulation of genes associated with photosynthesis and carbohydrate metabolism. Genome-wide association study (GWAS) analyses may indicate that variability in ZmSWEET13s correlates with agronomical traits, especifically flowering time and leaf angle. This work provides support for cooperation of three ZmSWEET13s with ZmSUT1 in phloem loading in Z. mays.


Assuntos
Técnicas de Inativação de Genes , Proteínas de Membrana Transportadoras/metabolismo , Mutação/genética , Floema/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Filogenia , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA